upash 项目使用教程

本文是 upash 项目使用教程。upash 是统一密码哈希算法的 API,具有简单、易维护升级、易测试等特点。介绍了项目快速启动的安装和使用示例,列举了在 Web、移动、桌面应用的案例及最佳实践,还提及支持的典型生态项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

upash 项目使用教程

upash 🔒Unified API for password hashing algorithms 项目地址: https://gitcode.com/gh_mirrors/up/upash

1. 项目介绍

upash 是一个统一密码哈希算法的 API,旨在为开发者提供一个简洁易用的接口,以便在应用程序中无缝使用任何密码哈希算法。upash 项目的目标是简化密码哈希算法的维护和升级过程,同时提供易于测试的配置。

主要特点

  • 简单 API:适用于所有密码哈希算法。
  • 易于维护和升级:逻辑简单,易于维护和升级。
  • 易于测试:通过 CLI 轻松测试配置。
  • 支持多种哈希算法:提供全面的哈希算法支持。

2. 项目快速启动

安装

首先,通过 npm 安装 upash 包:

npm install --save upash

然后,选择一个适合你需求的密码哈希算法并安装。例如,选择 @phc/argon2

npm install --save @phc/argon2

使用示例

以下是一个简单的使用示例,展示了如何使用 upash 进行密码哈希和验证:

const upash = require('upash');

// 安装选择的算法
upash.install('argon2', require('@phc/argon2'));

// 哈希 API
(async () => {
  const hashstr = await upash.hash('password');
  console.log(hashstr);
  // => "$argon2id$v=19$m=4096,t=3,p=1$PcEZHj1maR/+ZQynyJHWZg$2jEN4xcww7CYp1jakZB1rxbYsZ55XH2HgjYRtdZtubI"

  // 验证 API
  const match = await upash.verify(hashstr, 'password');
  console.log(match);
  // => true
})();

3. 应用案例和最佳实践

应用案例

upash 可以用于任何需要密码哈希的应用程序,例如:

  • Web 应用:在用户注册和登录时,使用 upash 进行密码哈希和验证。
  • 移动应用:在移动应用中,使用 upash 保护用户密码。
  • 桌面应用:在桌面应用中,使用 upash 进行密码存储和验证。

最佳实践

  • 选择合适的算法:根据应用的安全需求选择合适的哈希算法。例如,argon2 是一个适合大多数应用的强哈希算法。
  • 定期更新算法:随着硬件和攻击技术的进步,定期更新哈希算法以保持安全性。
  • 使用 CLI 测试配置:通过 CLI 测试不同配置下的哈希性能,确保在不影响用户体验的情况下保持安全性。

4. 典型生态项目

upash 项目支持多种哈希算法,以下是一些典型的生态项目:

  • @phc/argon2:Node.js 的 argon2 密码哈希算法,遵循 PHC 字符串格式。
  • @phc/pbkdf2:Node.js 的 pbkdf2 密码哈希算法,遵循 PHC 字符串格式。
  • @phc/scrypt:Node.js 的 scrypt 密码哈希算法,遵循 PHC 字符串格式。
  • @phc/bcrypt:Node.js 的 bcrypt 密码哈希算法,遵循 PHC 字符串格式。

这些项目都遵循 upash 的 API 规范,可以直接与 upash 集成使用。

upash 🔒Unified API for password hashing algorithms 项目地址: https://gitcode.com/gh_mirrors/up/upash

内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类算法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林泽炯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值