aiometer 项目教程

aiometer 项目教程

aiometer A Python concurrency scheduling library, compatible with asyncio and trio. 项目地址: https://gitcode.com/gh_mirrors/ai/aiometer

1. 项目目录结构及介绍

aiometer 项目的目录结构如下:

aiometer/
├── src/
│   └── aiometer/
│       ├── __init__.py
│       ├── ...
├── tests/
│   ├── __init__.py
│   ├── ...
├── .coveragerc_py38
├── .gitignore
├── CHANGELOG.md
├── CONTRIBUTING.md
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.md
├── pyproject.toml
├── requirements.txt
├── setup.cfg
└── setup.py

目录结构介绍

  • src/aiometer/: 这是项目的主要代码目录,包含了 aiometer 库的核心实现。

    • __init__.py: 初始化文件,定义了包的入口。
    • ...: 其他核心代码文件。
  • tests/: 包含项目的测试代码。

    • __init__.py: 初始化文件,定义了测试包的入口。
    • ...: 其他测试代码文件。
  • .coveragerc_py38: 配置文件,用于代码覆盖率测试。

  • .gitignore: Git 忽略文件配置。

  • CHANGELOG.md: 项目变更日志。

  • CONTRIBUTING.md: 贡献指南。

  • LICENSE: 项目许可证文件。

  • MANIFEST.in: 用于打包项目的配置文件。

  • Makefile: 项目构建和管理的 Makefile。

  • README.md: 项目介绍和使用说明。

  • pyproject.toml: 项目配置文件,用于定义项目的构建系统和依赖。

  • requirements.txt: 项目依赖列表。

  • setup.cfg: 项目安装配置文件。

  • setup.py: 项目安装脚本。

2. 项目启动文件介绍

aiometer 项目没有传统的“启动文件”,因为它是一个库,而不是一个独立的应用程序。用户通过导入 aiometer 包来使用其功能。

例如,用户可以通过以下方式导入并使用 aiometer:

import aiometer
import asyncio

async def make_query(query):
    await asyncio.sleep(0.05)  # 模拟数据库请求

queries = ['SELECT * from authors'] * 1000

# 允许最多 5 个查询同时运行
await aiometer.run_on_each(make_query, queries, max_at_once=5)

3. 项目配置文件介绍

pyproject.toml

pyproject.toml 是用于定义项目构建系统和依赖的配置文件。它通常包含以下内容:

[build-system]
requires = ["setuptools>=42", "wheel"]
build-backend = "setuptools.build_meta"

[project]
name = "aiometer"
version = "0.5.0"
description = "A Python concurrency scheduling library compatible with asyncio and trio"
authors = [
    { name="Florimond Manca", email="florimond.manca@gmail.com" }
]
dependencies = [
    "httpx>=0.15.0",
    "trio>=0.15.0",
    "asyncio>=3.7.0"
]

setup.cfg

setup.cfg 是项目安装配置文件,定义了项目的元数据和安装选项。它通常包含以下内容:

[metadata]
name = aiometer
version = 0.5.0
description = A Python concurrency scheduling library compatible with asyncio and trio
long_description = file: README.md
long_description_content_type = text/markdown
author = Florimond Manca
author_email = florimond.manca@gmail.com
license = MIT
classifiers =
    Development Status :: 4 - Beta
    Intended Audience :: Developers
    License :: OSI Approved :: MIT License
    Programming Language :: Python :: 3
    Programming Language :: Python :: 3.7
    Programming Language :: Python :: 3.8
    Programming Language :: Python :: 3.9

[options]
packages = find:
install_requires =
    httpx>=0.15.0
    trio>=0.15.0
    asyncio>=3.7.0

[options.packages.find]
where = src

requirements.txt

requirements.txt 是项目依赖列表,定义了项目运行所需的 Python 包。它通常包含以下内容:

httpx>=0.15.0
trio>=0.15.0
asyncio>=3.7.0

通过这些配置文件,用户可以了解项目的依赖关系、构建方式以及如何安装和使用该项目。

aiometer A Python concurrency scheduling library, compatible with asyncio and trio. 项目地址: https://gitcode.com/gh_mirrors/ai/aiometer

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
小区物业管理系统是一款基于.NET平台开发的软件应用,用于全面管理住宅小区的日常运营。它通过多种功能提升物业管理效率、优化服务质量,并促进业主与物业之间的沟通。在设计过程中,该系统采用了UML(统一建模语言)来确保其结构化和可维护性。UML是一种标准化的建模工具,通过图形化方式描述系统的结构与行为,帮助开发者理解和实现复杂的软件项目。 本项目涵盖了UML的十大模型图,包括用例图、类图、对象图、序列图、协作图、状态图、活动图、组件图、部署图和包图。这些模型图从不同角度描绘系统,例如用例图展示参与者(如业主、物业人员)与系统功能的交互;类图定义系统中的类、接口及其关系;对象图是类图的实例;序列图和协作图描述对象间的动态交互;状态图和活动图关注行为变化;组件图和部署图关注物理结构;包图则用于组织模块结构。 压缩包中的“杨平.doc”可能是设计者或项目负责人杨平的工作文档,包含项目需求、设计思路等重要信息。“任务书.doc”应明确项目的具体任务要求,如功能需求和性能指标。“小区物业管理系统.mdl”是UML模型文件,记录了系统的详细设计。“小区物业”可能是其他相关文件,如源代码或数据库脚本。整个项目提供了从需求分析到系统实现的完整流程,对于学习.NET开发和理解UML建模技术具有重要参考价值。开发者通过研究这些模型图,能够更好地构建类似的物业管理系统,提升软件工程实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林泽炯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值