aiometer 项目教程

aiometer 项目教程

aiometer A Python concurrency scheduling library, compatible with asyncio and trio. 项目地址: https://gitcode.com/gh_mirrors/ai/aiometer

1. 项目目录结构及介绍

aiometer 项目的目录结构如下:

aiometer/
├── src/
│   └── aiometer/
│       ├── __init__.py
│       ├── ...
├── tests/
│   ├── __init__.py
│   ├── ...
├── .coveragerc_py38
├── .gitignore
├── CHANGELOG.md
├── CONTRIBUTING.md
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.md
├── pyproject.toml
├── requirements.txt
├── setup.cfg
└── setup.py

目录结构介绍

  • src/aiometer/: 这是项目的主要代码目录,包含了 aiometer 库的核心实现。

    • __init__.py: 初始化文件,定义了包的入口。
    • ...: 其他核心代码文件。
  • tests/: 包含项目的测试代码。

    • __init__.py: 初始化文件,定义了测试包的入口。
    • ...: 其他测试代码文件。
  • .coveragerc_py38: 配置文件,用于代码覆盖率测试。

  • .gitignore: Git 忽略文件配置。

  • CHANGELOG.md: 项目变更日志。

  • CONTRIBUTING.md: 贡献指南。

  • LICENSE: 项目许可证文件。

  • MANIFEST.in: 用于打包项目的配置文件。

  • Makefile: 项目构建和管理的 Makefile。

  • README.md: 项目介绍和使用说明。

  • pyproject.toml: 项目配置文件,用于定义项目的构建系统和依赖。

  • requirements.txt: 项目依赖列表。

  • setup.cfg: 项目安装配置文件。

  • setup.py: 项目安装脚本。

2. 项目启动文件介绍

aiometer 项目没有传统的“启动文件”,因为它是一个库,而不是一个独立的应用程序。用户通过导入 aiometer 包来使用其功能。

例如,用户可以通过以下方式导入并使用 aiometer:

import aiometer
import asyncio

async def make_query(query):
    await asyncio.sleep(0.05)  # 模拟数据库请求

queries = ['SELECT * from authors'] * 1000

# 允许最多 5 个查询同时运行
await aiometer.run_on_each(make_query, queries, max_at_once=5)

3. 项目配置文件介绍

pyproject.toml

pyproject.toml 是用于定义项目构建系统和依赖的配置文件。它通常包含以下内容:

[build-system]
requires = ["setuptools>=42", "wheel"]
build-backend = "setuptools.build_meta"

[project]
name = "aiometer"
version = "0.5.0"
description = "A Python concurrency scheduling library compatible with asyncio and trio"
authors = [
    { name="Florimond Manca", email="florimond.manca@gmail.com" }
]
dependencies = [
    "httpx>=0.15.0",
    "trio>=0.15.0",
    "asyncio>=3.7.0"
]

setup.cfg

setup.cfg 是项目安装配置文件,定义了项目的元数据和安装选项。它通常包含以下内容:

[metadata]
name = aiometer
version = 0.5.0
description = A Python concurrency scheduling library compatible with asyncio and trio
long_description = file: README.md
long_description_content_type = text/markdown
author = Florimond Manca
author_email = florimond.manca@gmail.com
license = MIT
classifiers =
    Development Status :: 4 - Beta
    Intended Audience :: Developers
    License :: OSI Approved :: MIT License
    Programming Language :: Python :: 3
    Programming Language :: Python :: 3.7
    Programming Language :: Python :: 3.8
    Programming Language :: Python :: 3.9

[options]
packages = find:
install_requires =
    httpx>=0.15.0
    trio>=0.15.0
    asyncio>=3.7.0

[options.packages.find]
where = src

requirements.txt

requirements.txt 是项目依赖列表,定义了项目运行所需的 Python 包。它通常包含以下内容:

httpx>=0.15.0
trio>=0.15.0
asyncio>=3.7.0

通过这些配置文件,用户可以了解项目的依赖关系、构建方式以及如何安装和使用该项目。

aiometer A Python concurrency scheduling library, compatible with asyncio and trio. 项目地址: https://gitcode.com/gh_mirrors/ai/aiometer

内容概要:本文详细介绍了智慧社区系统的多个关键技术模块及其代码实现,涵盖智能照明、楼控系统、安防系统以及运维管理等方面。首先探讨了智能照明系统的实现逻辑,通过人体移动传感器和环境光强度进行双重要素判断,确保照明系统的智能化运作。接着深入分析了楼控系统中的电梯调度算法,强调了动态负载均衡算法的应用,特别是在高峰时段的优化调度。对于安防系统,则着重于门禁系统和视频监控的联动,利用事件驱动机制实现异常情况的及时响应。最后讨论了可视化大屏的数据展示技术,采用ECharts等工具实现高效的数据可视化。此外,还提到了设备台账管理和运维管理中的定时任务脚本,展示了如何通过代码解决实际问题。 适用人群:适用于具有一定编程基础的研发人员和技术爱好者,特别是对物联网、智能家居等领域感兴趣的开发者。 使用场景及目标:帮助读者理解并掌握智慧社区各子系统的具体实现方法,能够应用于实际项目的开发中,提升系统的智能化水平和用户体验。 其他说明:文中不仅提供了具体的代码示例,还分享了许多实战经验和技巧,如MQTT协议用于设备通信、WebSocket用于状态同步、ECharts用于数据可视化等。同时指出了实际开发过程中可能会遇到的问题及解决方案,如设备状态同步、视频流处理性能优化等。 适合人群:具备一定编程基础,对物联网、智能家居等领域感兴趣的研发人员和技术爱好者。 使用场景及目标:①理解智慧社区各子系统的具体实现方法;②将相关技术应用到实际项目开发中,提高系统的智能化水平和用户体验。 阅读建议:本文不仅提供具体代码示例,还分享了大量实战经验与技巧,在学习过程中应重点关注这些实践经验,并结合自身项目情况进行实践探索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林泽炯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值