开源项目 r2c 使用教程
1. 项目目录结构及介绍
r2c/
├── data/
│ └── README.md
├── dataloaders/
│ └── vcr.py
├── models/
│ ├── eval_for_leaderboard.py
│ ├── eval_q2ar.py
│ ├── train.py
│ └── saves/
│ ├── flagship_answer/
│ └── flagship_rationale/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── allennlp-requirements.txt
└── config.py
目录结构介绍
- data/: 包含数据集的说明文件
README.md
,指导如何获取和处理数据。 - dataloaders/: 包含数据加载器
vcr.py
,用于加载和处理数据。 - models/: 包含模型的训练和评估脚本,如
eval_for_leaderboard.py
、eval_q2ar.py
和train.py
。saves/
目录用于存储训练好的模型。 - utils/: 包含项目中使用的各种实用工具。
- .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的说明文件,包含项目的背景、安装和使用说明。
- allennlp-requirements.txt: 项目依赖的 AllenNLP 库的版本要求。
- config.py: 项目的配置文件,包含项目的各种配置参数。
2. 项目启动文件介绍
train.py
train.py
是项目的启动文件,用于训练模型。它包含了模型的训练逻辑和参数设置。
# 示例代码
python train.py --config config.py --data_dir data/ --output_dir models/saves/
eval_for_leaderboard.py
eval_for_leaderboard.py
用于在排行榜上提交模型结果。它加载训练好的模型并生成预测结果。
# 示例代码
python eval_for_leaderboard.py --model_path models/saves/flagship_answer/best.th --data_dir data/
eval_q2ar.py
eval_q2ar.py
用于评估模型的性能,结合 Q->A 和 QA->R 两个任务的验证结果。
# 示例代码
python eval_q2ar.py --model_path models/saves/flagship_answer/best.th --data_dir data/
3. 项目的配置文件介绍
config.py
config.py
是项目的配置文件,包含了项目的各种配置参数,如数据路径、模型参数、训练参数等。
# 示例代码
config = {
"data_dir": "data/",
"output_dir": "models/saves/",
"batch_size": 32,
"learning_rate": 0.001,
"num_epochs": 10,
# 其他配置参数
}
通过修改 config.py
中的参数,可以调整模型的训练和评估行为。
以上是开源项目 r2c
的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这份文档能帮助你更好地理解和使用该项目。