开源项目 r2c 使用教程

开源项目 r2c 使用教程

r2c Recognition to Cognition Networks (code for the model in "From Recognition to Cognition: Visual Commonsense Reasoning", CVPR 2019) 项目地址: https://gitcode.com/gh_mirrors/r2/r2c

1. 项目目录结构及介绍

r2c/
├── data/
│   └── README.md
├── dataloaders/
│   └── vcr.py
├── models/
│   ├── eval_for_leaderboard.py
│   ├── eval_q2ar.py
│   ├── train.py
│   └── saves/
│       ├── flagship_answer/
│       └── flagship_rationale/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── allennlp-requirements.txt
└── config.py

目录结构介绍

  • data/: 包含数据集的说明文件 README.md,指导如何获取和处理数据。
  • dataloaders/: 包含数据加载器 vcr.py,用于加载和处理数据。
  • models/: 包含模型的训练和评估脚本,如 eval_for_leaderboard.pyeval_q2ar.pytrain.pysaves/ 目录用于存储训练好的模型。
  • utils/: 包含项目中使用的各种实用工具。
  • .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的说明文件,包含项目的背景、安装和使用说明。
  • allennlp-requirements.txt: 项目依赖的 AllenNLP 库的版本要求。
  • config.py: 项目的配置文件,包含项目的各种配置参数。

2. 项目启动文件介绍

train.py

train.py 是项目的启动文件,用于训练模型。它包含了模型的训练逻辑和参数设置。

# 示例代码
python train.py --config config.py --data_dir data/ --output_dir models/saves/

eval_for_leaderboard.py

eval_for_leaderboard.py 用于在排行榜上提交模型结果。它加载训练好的模型并生成预测结果。

# 示例代码
python eval_for_leaderboard.py --model_path models/saves/flagship_answer/best.th --data_dir data/

eval_q2ar.py

eval_q2ar.py 用于评估模型的性能,结合 Q->A 和 QA->R 两个任务的验证结果。

# 示例代码
python eval_q2ar.py --model_path models/saves/flagship_answer/best.th --data_dir data/

3. 项目的配置文件介绍

config.py

config.py 是项目的配置文件,包含了项目的各种配置参数,如数据路径、模型参数、训练参数等。

# 示例代码
config = {
    "data_dir": "data/",
    "output_dir": "models/saves/",
    "batch_size": 32,
    "learning_rate": 0.001,
    "num_epochs": 10,
    # 其他配置参数
}

通过修改 config.py 中的参数,可以调整模型的训练和评估行为。


以上是开源项目 r2c 的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这份文档能帮助你更好地理解和使用该项目。

r2c Recognition to Cognition Networks (code for the model in "From Recognition to Cognition: Visual Commonsense Reasoning", CVPR 2019) 项目地址: https://gitcode.com/gh_mirrors/r2/r2c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任翊昆Mary

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值