mols2grid 项目教程

mols2grid 项目教程

mols2grid Interactive molecule viewer for 2D structures mols2grid 项目地址: https://gitcode.com/gh_mirrors/mo/mols2grid

1. 项目介绍

mols2grid 是一个基于 RDKit 的交互式分子 2D 结构查看器。它旨在帮助化学信息学领域的研究人员和开发者更方便地查看和分析分子结构。mols2grid 提供了丰富的功能,包括自定义显示、过滤、回调等,支持在 Jupyter Notebook 中使用。

2. 项目快速启动

安装

首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 mols2grid

pip install mols2grid

基本使用

以下是一个简单的示例,展示如何在 Jupyter Notebook 中使用 mols2grid 显示分子结构:

import mols2grid
from rdkit import Chem

# 加载分子数据
smiles = ["CCO", "CCN", "CC(=O)O"]
mols = [Chem.MolFromSmiles(smi) for smi in smiles]

# 显示分子结构
mols2grid.display(mols)

3. 应用案例和最佳实践

应用案例

案例 1:分子筛选

在药物发现过程中,筛选出具有特定性质的分子是非常重要的。mols2grid 可以帮助你快速筛选出符合条件的分子。

# 筛选出分子量小于 50 的分子
filtered_mols = [mol for mol in mols if Chem.Descriptors.MolWt(mol) < 50]
mols2grid.display(filtered_mols)
案例 2:自定义显示

你可以自定义分子的显示方式,例如只显示分子的名称和结构:

mols2grid.display(mols, subset=["Name", "img"])

最佳实践

  • 数据预处理:在使用 mols2grid 之前,确保你的分子数据已经过适当的预处理,例如去除无效的 SMILES 字符串。
  • 性能优化:对于大规模数据集,建议使用分页或过滤功能来提高性能。

4. 典型生态项目

mols2grid 作为一个分子可视化工具,通常与其他化学信息学工具和库一起使用,以构建完整的化学信息学工作流程。以下是一些典型的生态项目:

  • RDKit:一个强大的化学信息学库,提供了分子操作、描述符计算等功能。
  • Jupyter Notebook:一个交互式计算环境,非常适合用于数据分析和可视化。
  • Pandas:用于数据处理和分析的库,可以与 mols2grid 结合使用,处理大规模分子数据。

通过结合这些工具,你可以构建一个完整的化学信息学工作流程,从数据处理到分子可视化。

mols2grid Interactive molecule viewer for 2D structures mols2grid 项目地址: https://gitcode.com/gh_mirrors/mo/mols2grid

数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通与作业场景中的常见载具 - Buoy(浮标):水域导航与安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参与者的目标检测 标注格式: YOLO格式标注,含目标边界框与类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度与光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员与小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具与静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框与目标实际尺寸高度吻合 场景适配性: 包含近岸与开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任翊昆Mary

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值