探索Cacao:Rust版的AppKit与UIKit绑定库

探索Cacao:Rust版的AppKit与UIKit绑定库

cacaoRust bindings for AppKit (macOS) and UIKit (iOS/tvOS). Experimental, but working!项目地址:https://gitcode.com/gh_mirrors/ca/cacao

项目介绍

Cacao 是一个处于早期开发阶段的开源库,它为Rust编程语言提供了安全的AppKit(macOS)和UIKit(iOS/tvOS)绑定。这个项目旨在让熟悉Swift或Objective-C的开发者在Rust中编写界面时也能感到亲切。尽管面临Rust所有权模型的挑战,但Cacao通过创新编码和假设实现了这一目标。

项目技术分析

Cacao的核心特点是其对内存和所有权的管理方式,这使得即使在Rust这样强调安全性语言的环境中,也能提供类似于原生平台API的体验。虽然不可避免地涉及到大量unsafe代码以处理Objective-C运行时,但是Cacao通过封装确保了对外接口的安全性。此外,Cacao还支持 Cargo 特性(如 appkituikit),以适应不同的平台需求。

项目及技术应用场景

  • 想要构建跨平台应用,但希望部分功能能够充分利用macOS、iOS或tvOS原生特性的开发者。
  • 希望利用Rust的性能优势,同时保持与Objective-C或Swift生态系统兼容性的团队。
  • 对Rust有深厚兴趣,想要尝试在苹果平台上构建本地应用的个人开发者。

项目特点

  • 熟悉感:Cacao的设计灵感来源于Swift和Objective-C,使你能够在Rust中轻松上手。
  • 广泛支持:目前提供了包括窗口、视图、颜色、按钮等在内的多个组件,部分功能已在macOS(ios/tvOS)平台上实现。
  • 可选特性:你可以启用或禁用各种Cargo特性,如cloudkitquicklookwebview,来定制你的应用程序。
  • 易于入门:简单的Hello World示例只需几行代码,且仓库内提供丰富的示例以帮助你快速启动项目。

以下是一个简单的Hello World程序:

use cacao::appkit::{App, AppDelegate};
use cacao::appkit::window::Window;

#[derive(Default)]
struct BasicApp {
    window: Window
}

impl AppDelegate for BasicApp {
    fn did_finish_launching(&self) {
        self.window.set_minimum_content_size(400., 400.);
        self.window.set_title("Hello World!");
        self.window.show();
    }
}

fn main() {
    App::new("com.hello.world", BasicApp::default()).run();
}

总结

Cacao 提供了一个独特的桥梁,将Rust的强大与Apple生态系统深度集成。对于那些寻求在非Apple平台之外扩展其应用程序,或是想尝试在Rust中构建本地应用的人来说,这是一个非常值得关注的项目。随着项目的进一步发展,我们期待看到更多功能的完善,以及更广泛的社区参与。

cacaoRust bindings for AppKit (macOS) and UIKit (iOS/tvOS). Experimental, but working!项目地址:https://gitcode.com/gh_mirrors/ca/cacao

基于python+NSGA2算法的供水管网水质监测点布局+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 供水管网水质监测点/传感器布局优化 1.基于整数编码的NSGA2算法 2.最短监测时间最大监测概率双目标函数 3.使用基于epanet的wntr进行水力水质模拟,并处理结果 4.将处理结果代入NSGA2算法, 迭代计算出结果 5. 所有功能基本实现, 流程基本可以走通 程序概述 本程序主要是解决供水管网水质监测点的布局优化问题; 面向的是突发污染情况下的水质监测点选取,因此需要多节点进行水质污染注入实验; 之前的做法都是使用epanet的程序包,链接,但USEPA之后开源了基于Python的水力水质模拟WNTR; 因此本程序使用了WNTR进行水力水质模拟,编写了水质模拟、数据处理模块;用于解决污染实验的实现数据收集处理; 由于选择监测点是布局优化问题,因此使用了常见的进化算法NSGA2——非支配遗传算法; 水质监测布局常用的目标是最小化监测时间和最大化监测事件,即一组监测点尽可能对污染事件发生响应最快,对污染事件监测到的数量最多即为最优,但两个目标属于负相关。 有关帕累托解、NGSA2算法请自行搜索其他资料。 本程序实现了水质模拟、数据处理、算法迭代的全部过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋溪普Gale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值