stelf-loader 使用与安装教程

stelf-loader 使用与安装教程

stelf-loader A stealthy ELF loader - no files, no execve, no RWX 项目地址: https://gitcode.com/gh_mirrors/st/stelf-loader

1. 项目目录结构及介绍

stelf-loader 是一个旨在无痕加载ELF文件的工具,支持在不产生文件、不使用execve系统调用以及避免读写可执行(RX)内存段的情况下加载程序。以下为该开源项目的典型目录结构及其主要组件简介:

.
├── README.md       // 项目的主要说明文件,包含了项目介绍和使用示例。
├── LICENSE         // 开源许可证文件,本项目遵循MIT许可协议。
├── assembler.py    // Python脚本,用于处理或生成特定的加载逻辑或壳代码。
├── elf_to_shellcode.py
├── elf_to_stelf.py  // 将ELF文件转换成特殊格式以供隐藏加载的关键脚本。
└── test_elfs       // 示例ELF文件夹,包含了用于测试的简单ELF文件。

2. 项目的启动文件介绍

stelf-loader 的核心逻辑并不直接通过单一的“启动文件”运行,而是依赖于一系列Python脚本来实现功能。关键的启动流程是由elf_to_stelf.py来触发的,它接受一个或多个ELF文件作为输入,并生成一段能够将这些ELF代码注入到当前进程地址空间的shell命令或者脚本。

如何“启动”:

  1. 准备阶段:你需要有一个ELF文件,例如项目中的test_elfs目录下的样本。
  2. 转化命令:通过执行类似下面的命令来转化ELF文件为可以直接在终端执行的一系列命令:
    python3 elf_to_stelf.py path/to/your/elffile - -r
    
    这里,-r参数通常用于指定注入方式,避免直接执行而采用重定向等技巧。

3. 项目的配置文件介绍

实际上,stelf-loader 并没有传统意义上的配置文件。其配置或定制主要是通过脚本参数传递进行的,比如在使用elf_to_stelf.py时,通过命令行参数指定输入的ELF路径、是否需要特殊的加载选项等。因此,对于配置的理解应更多地基于如何调用这些脚本和传递正确的参数组合上,而非维护单独的配置文件。

自定义配置方法:

虽然没有配置文件,但你可以通过修改脚本内的变量或在调用脚本时提供参数来实现某种程度上的自定义。例如,调整注入的地址、改变ELF解析的行为等,但这要求对项目有深入理解。

总结来说,stelf-loader的设计侧重于轻量级和灵活性,通过脚本交互实现动态配置,而不是依赖静态的配置文件。在实际应用中,理解和掌握这些脚本的使用方法是关键。

stelf-loader A stealthy ELF loader - no files, no execve, no RWX 项目地址: https://gitcode.com/gh_mirrors/st/stelf-loader

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
内容概要:本文详细介绍了威纶通标准程序集锦,涵盖了多个常用功能模块,如XY曲线绘制、配方管理、权限设置、报警记录查询操作、操作记录查询等。每个功能模块不仅提供了完整的代码示例,还附带了详细的解释和优化建议。例如,XY曲线功能展示了如何进行坐标系转换并保持画面流畅;配方管理部分则强调了合理的寄存器规划和数据保存方法;权限管理模块引入了MD5加密和全局权限变量传递,确保系统的安全性和灵活性;报警记录处理采用了类SQL查询方式,能够高效处理大量报警数据。此外,操作记录模块采用三层架构设计,便于审计和项目验收文档生成。这套程序不仅功能全面,界面简洁,而且各个模块之间通过全局变量耦合,实现了松耦合结构,方便移植和扩展。 适合人群:初学者、在校学生以及有一定经验的工程师。 使用场景及目标:① 初学者可以通过这套程序快速掌握威纶通触摸屏编程的基本技能;② 工程师可以在实际项目中直接引用或修改这些功能模块,提高开发效率;③ 学习权限管理和数据处理的最佳实践,提升系统安全性。 阅读建议:建议读者仔细研读每个功能模块的代码实现及其背后的原理,尤其是权限管理和报警记录处理部分,这对于理解和设计复杂系统非常重要。同时,可以根据具体需求对代码进行适当调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋溪普Gale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值