CAML-MIMIC:可解释的医疗代码预测模型

CAML-MIMIC:可解释的医疗代码预测模型

caml-mimic multilabel classification of EHR notes 项目地址: https://gitcode.com/gh_mirrors/ca/caml-mimic

项目简介

CAML-MIMIC是一个开源项目,其代码库旨在支持论文《从临床文本中可解释的医学代码预测》的研究。该项目的主要目标是通过自然语言处理(NLP)技术,以可解释的方式预测医学文档中的疾病和程序代码。遗憾的是,当前项目已被存档,但仍然提供代码供社区参考。

项目技术分析

CAML-MIMIC使用了PyTorch 0.3.0作为深度学习框架,并依赖于tqdm,scikit-learn,numpy,scipy,pandas,jupyter notebook,gensim和nltk等库。该项目的架构包括一个卷积神经网络(CNN),名为CAML,以及一个改进版的CAML——DR-CAML,它能更好地结合上下文信息进行预测。

数据预处理部分,项目提供了Python脚本,用于整理MIMIC-II和MIMIC-III数据集,这两个数据集均需要自行获取。这些脚本会创建所需的数据结构,并可选择预先训练词嵌入以加快处理速度。

应用场景

CAML-MIMIC适用于医疗信息系统的开发,尤其在自动化电子健康记录(EHR)编码方面。通过对临床文本的理解,模型可以帮助医生快速准确地分类和编码患者的疾病与治疗情况。此外,由于其可解释性,该模型也可用于教学,帮助医学生理解复杂的医学诊断过程。

项目特点

  1. 可解释性:模型的预测结果可以解释,这在医疗领域至关重要,因为它要求决策的透明性和可理解性。
  2. 针对特定领域的应用:专为医学文献设计,对ICD代码的预测精度高。
  3. 开放源码:虽然不再维护更新,但源代码仍然可供研究者参考和复现实验结果。
  4. 数据处理工具:提供了自动化数据预处理流程,简化了数据准备步骤。

要体验CAML-MIMIC的强大功能,只需按照提供的指南设置环境,加载MIMIC数据集,运行预处理脚本,并利用预训练模型或自定义参数训练新模型。如果你有兴趣探索医疗文本的深度学习应用,这是一个绝佳的起点。

caml-mimic multilabel classification of EHR notes 项目地址: https://gitcode.com/gh_mirrors/ca/caml-mimic

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋溪普Gale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值