CAML-MIMIC:可解释的医疗代码预测模型

CAML-MIMIC:可解释的医疗代码预测模型

caml-mimic multilabel classification of EHR notes 项目地址: https://gitcode.com/gh_mirrors/ca/caml-mimic

项目简介

CAML-MIMIC是一个开源项目,其代码库旨在支持论文《从临床文本中可解释的医学代码预测》的研究。该项目的主要目标是通过自然语言处理(NLP)技术,以可解释的方式预测医学文档中的疾病和程序代码。遗憾的是,当前项目已被存档,但仍然提供代码供社区参考。

项目技术分析

CAML-MIMIC使用了PyTorch 0.3.0作为深度学习框架,并依赖于tqdm,scikit-learn,numpy,scipy,pandas,jupyter notebook,gensim和nltk等库。该项目的架构包括一个卷积神经网络(CNN),名为CAML,以及一个改进版的CAML——DR-CAML,它能更好地结合上下文信息进行预测。

数据预处理部分,项目提供了Python脚本,用于整理MIMIC-II和MIMIC-III数据集,这两个数据集均需要自行获取。这些脚本会创建所需的数据结构,并可选择预先训练词嵌入以加快处理速度。

应用场景

CAML-MIMIC适用于医疗信息系统的开发,尤其在自动化电子健康记录(EHR)编码方面。通过对临床文本的理解,模型可以帮助医生快速准确地分类和编码患者的疾病与治疗情况。此外,由于其可解释性,该模型也可用于教学,帮助医学生理解复杂的医学诊断过程。

项目特点

  1. 可解释性:模型的预测结果可以解释,这在医疗领域至关重要,因为它要求决策的透明性和可理解性。
  2. 针对特定领域的应用:专为医学文献设计,对ICD代码的预测精度高。
  3. 开放源码:虽然不再维护更新,但源代码仍然可供研究者参考和复现实验结果。
  4. 数据处理工具:提供了自动化数据预处理流程,简化了数据准备步骤。

要体验CAML-MIMIC的强大功能,只需按照提供的指南设置环境,加载MIMIC数据集,运行预处理脚本,并利用预训练模型或自定义参数训练新模型。如果你有兴趣探索医疗文本的深度学习应用,这是一个绝佳的起点。

caml-mimic multilabel classification of EHR notes 项目地址: https://gitcode.com/gh_mirrors/ca/caml-mimic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋溪普Gale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值