CAML-MIMIC:可解释的医疗代码预测模型
caml-mimic multilabel classification of EHR notes 项目地址: https://gitcode.com/gh_mirrors/ca/caml-mimic
项目简介
CAML-MIMIC是一个开源项目,其代码库旨在支持论文《从临床文本中可解释的医学代码预测》的研究。该项目的主要目标是通过自然语言处理(NLP)技术,以可解释的方式预测医学文档中的疾病和程序代码。遗憾的是,当前项目已被存档,但仍然提供代码供社区参考。
项目技术分析
CAML-MIMIC使用了PyTorch 0.3.0作为深度学习框架,并依赖于tqdm,scikit-learn,numpy,scipy,pandas,jupyter notebook,gensim和nltk等库。该项目的架构包括一个卷积神经网络(CNN),名为CAML,以及一个改进版的CAML——DR-CAML,它能更好地结合上下文信息进行预测。
数据预处理部分,项目提供了Python脚本,用于整理MIMIC-II和MIMIC-III数据集,这两个数据集均需要自行获取。这些脚本会创建所需的数据结构,并可选择预先训练词嵌入以加快处理速度。
应用场景
CAML-MIMIC适用于医疗信息系统的开发,尤其在自动化电子健康记录(EHR)编码方面。通过对临床文本的理解,模型可以帮助医生快速准确地分类和编码患者的疾病与治疗情况。此外,由于其可解释性,该模型也可用于教学,帮助医学生理解复杂的医学诊断过程。
项目特点
- 可解释性:模型的预测结果可以解释,这在医疗领域至关重要,因为它要求决策的透明性和可理解性。
- 针对特定领域的应用:专为医学文献设计,对ICD代码的预测精度高。
- 开放源码:虽然不再维护更新,但源代码仍然可供研究者参考和复现实验结果。
- 数据处理工具:提供了自动化数据预处理流程,简化了数据准备步骤。
要体验CAML-MIMIC的强大功能,只需按照提供的指南设置环境,加载MIMIC数据集,运行预处理脚本,并利用预训练模型或自定义参数训练新模型。如果你有兴趣探索医疗文本的深度学习应用,这是一个绝佳的起点。
caml-mimic multilabel classification of EHR notes 项目地址: https://gitcode.com/gh_mirrors/ca/caml-mimic