探索声音的维度:SoundSpaces - 革新的音频视觉仿真平台
SoundSpaces 是一个专为音频视觉AI研究打造的高真实感声学模拟平台。从音频视觉导航,到音频视觉探索、回声定位,甚至是音频视觉楼层平面重建,它将具身智能的研究边界扩展到了更广泛的领域。
(展示视频可在我们的项目页面找到。)
动机与目标
在现实世界中,移动体验是多元感官交织的,但当前的具身智能代理却"聋哑"——只能依赖视觉感知环境。我们引入了复杂的、声学和视觉真实感3D环境中的音频视觉导航,并构建了 SoundSpaces ——基于几何声学模拟的音频渲染数据集,该数据集基于两个公开可用的3D环境(Matterport3D 和 Replica),并使Habitat能够支持新传感器,使其有可能在一系列真实的环境扫描场景中插入任意的声音源。
引用 SoundSpaces
如果你在研究中使用了 SoundSpaces 平台,请引用以下论文:
@inproceedings{chen22soundspaces2,
title = {SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning},
author = {Changan Chen and Carl Schissler and Sanchit Garg and Philip Kobernik and Alexander Clegg and Paul Calamia and Dhruv Batra and Philip W Robinson and Kristen Grauman},
booktitle = {NeurIPS 2022 Datasets and Benchmarks Track},
year = {2022}
}
@inproceedings{chen20soundspaces,
title = {SoundSpaces: Audio-Visual Navigaton in 3D Environments},
author = {Changan Chen and Unnat Jain and Carl Schissler and Sebastia Vicenc Amengual Gari and Ziad Al-Halah and Vamsi Krishna Ithapu and Philip Robinson and Kristen Grauman},
booktitle = {ECCV},
year = {2020}
}
如果您使用了任何3D场景资产(如Matterport3D, Replica, HM3D, Gibson等),请务必引用相关论文!
安装与使用
请按照详细的安装指南进行安装。该库可以渲染与视觉相匹配的高质量音频和视觉观察结果,支持多种视觉声学学习任务,包括音频视觉导航、基于第一人称视角的声学预测等。本仓库提供了训练和评估音频导航代理的代码。其他下游任务请参考各论文对应的仓库,例如视觉声学匹配和音频视觉消混。
以下是一些在 Replica 场景中使用深度传感器训练和评估 AudioGoal 的示例命令:
- 训练:
python ss_baselines/av_nav/run.py --exp-config ss_baselines/av_nav/config/audionav/replica/train_telephone/audiogoal_depth.yaml --model-dir data/models/replica/audiogoal_depth
- 验证(评估每个检查点并生成验证曲线):
python ss_baselines/av_nav/run.py --run-type eval --exp-config ss_baselines/av_nav/config/audionav/replica/val_telephone/audiogoal_depth.yaml --model-dir data/models/replica/audiogoal_depth
- 使用最佳验证检查点测试:
python ss_baselines/av_nav/run.py --run-type eval --exp-config ss_baselines/av_nav/config/audionav/replica/test_telephone/audiogoal_depth.yaml --model-dir data/models/replica/audiogoal_depth EVAL_CKPT_PATH_DIR data/models/replica/audiogoal_depth/data/ckpt.XXX.pth
- 生成带有音频的演示视频:
python ss_baselines/av_nav/run.py --run-type eval --exp-config ss_baselines/av_nav/config/audionav/replica/test_telephone/audiogoal_depth.yaml --model-dir data/models/replica/audiogoal_depth EVAL_CKPT_PATH_DIR data/models/replica/audiogoal_depth/data/ckpt.220.pth VIDEO_OPTION ["disk"] TASK_CONFIG.SIMULATOR.USE_RENDERED_OBSERVATIONS False TASK_CONFIG.TASK.SENSORS ["POINTGOAL_WITH_GPS_COMPASS_SENSOR","SPECTROGRAM_SENSOR","AUDIOGOAL_SENSOR"] SENSORS ["RGB_SENSOR","DEPTH_SENSOR"] EXTRA_RGB True TASK_CONFIG.SIMULATOR.CONTINUOUS_VIEW_CHANGE True DISPLAY_RESOLUTION 512 TEST_EPISODE_COUNT 1
- 交互式演示:
python scripts/interactive_demo.py
- (新功能) 训练连续导航代理:
python ss_baselines/av_nav/run.py --exp-config ss_baselines/av_nav/config/audionav/mp3d/train_telephone/audiogoal_depth_ddppo.yaml --model-dir data/models/ss2/mp3d/dav_nav CONTINUOUS True
SoundSpaces 1.0
提供针对 Replica 和 Matterport3D 数据集的声学真实感音频渲染。这些渲染的房间脉冲响应(RIR)允许用户在训练时对任何源声音进行卷积。更多详情请见data部分。请注意,目前我们不开放渲染代码。
SoundSpaces 2.0
SoundSpaces 2.0 是一个快速、连续、可配置且通用的音频-视觉模拟平台,让用户能够为任意空间和环境渲染声音。由于渲染精度的提升,渲染出的IR与 SoundSpaces 1.0有所不同。请参阅jupyter notebook获取快速教程。API文档见SoundSpaces2.md。
贡献
请参阅CONTRIBUTING.md文件了解如何参与贡献。
许可证
SoundSpaces 持照CC-BY-4.0发布,详细信息请见LICENSE文件。
训练模型和任务数据集被认为是根据对应场景数据集衍生的数据。
- 基于 Matterport3D 的任务数据集和训练模型遵循 Matterport3D 使用条款以及CC BY-NC-SA 3.0 US 许可。
- 基于 Replica 的任务数据集、生成此类数据集的代码以及训练模型均遵守 Replica 许可。
现在,带上你的创新思维,一起踏入 SoundSpaces 打造的多维智能世界,开启一段全新的探索之旅吧!