AVT 开源项目教程

AVT 开源项目教程

AVTCode release for ICCV 2021 paper "Anticipative Video Transformer"项目地址:https://gitcode.com/gh_mirrors/avt/AVT

本文档旨在为开源项目 AVT(链接:https://github.com/facebookresearch/AVT.git)提供详细的安装和使用指南。我们将介绍项目的目录结构、启动文件以及配置文件。

1. 项目的目录结构及介绍

AVT 项目的目录结构如下:

AVT/
├── data/
│   ├── processed/
│   └── raw/
├── docs/
├── models/
├── notebooks/
├── scripts/
├── src/
│   ├── data/
│   ├── features/
│   ├── models/
│   └── visualization/
├── tests/
├── .gitignore
├── README.md
├── requirements.txt
├── setup.py
└── config.yaml

目录介绍

  • data/: 存储数据文件,包括原始数据和处理后的数据。
    • processed/: 处理后的数据文件。
    • raw/: 原始数据文件。
  • docs/: 项目文档。
  • models/: 存储训练好的模型文件。
  • notebooks/: Jupyter Notebook 文件,用于数据分析和模型实验。
  • scripts/: 包含各种脚本文件,如数据处理脚本、模型训练脚本等。
  • src/: 源代码目录。
    • data/: 数据处理相关代码。
    • features/: 特征工程相关代码。
    • models/: 模型训练和评估相关代码。
    • visualization/: 数据可视化相关代码。
  • tests/: 测试代码。
  • .gitignore: Git 忽略文件配置。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖包列表。
  • setup.py: 项目安装脚本。
  • config.yaml: 项目配置文件。

2. 项目的启动文件介绍

项目的启动文件通常位于 scripts/ 目录下,例如 train.pypredict.py

train.py

train.py 文件用于训练模型,其主要功能包括:

  • 加载数据
  • 数据预处理
  • 模型训练
  • 模型保存

predict.py

predict.py 文件用于模型预测,其主要功能包括:

  • 加载预训练模型
  • 数据预处理
  • 模型预测
  • 输出预测结果

3. 项目的配置文件介绍

项目的配置文件通常为 config.yaml,该文件包含了项目的各种配置参数,如数据路径、模型参数、训练参数等。

config.yaml 示例

data:
  raw_path: "data/raw"
  processed_path: "data/processed"

model:
  name: "avt_model"
  epochs: 10
  batch_size: 32

training:
  learning_rate: 0.001
  optimizer: "adam"

配置文件参数介绍

  • data: 数据相关配置。
    • raw_path: 原始数据路径。
    • processed_path: 处理后的数据路径。
  • model: 模型相关配置。
    • name: 模型名称。
    • epochs: 训练轮数。
    • batch_size: 批处理大小。
  • training: 训练相关配置。
    • learning_rate: 学习率。
    • optimizer: 优化器类型。

通过以上介绍,您应该对 AVT 项目的目录结构、启动文件和配置文件有了基本的了解。希望这份文档能帮助您更好地使用和理解该项目。

AVTCode release for ICCV 2021 paper "Anticipative Video Transformer"项目地址:https://gitcode.com/gh_mirrors/avt/AVT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋韵庚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值