NVIDIA Triton Inference Server 使用指南

NVIDIA Triton Inference Server 使用指南

server server 项目地址: https://gitcode.com/gh_mirrors/server117/server

1. 项目介绍

NVIDIA Triton Inference Server 是一个开源的推理服务软件,旨在简化 AI 推理过程。它支持多种深度学习和机器学习框架,包括 TensorRT、TensorFlow、PyTorch、ONNX、OpenVINO、Python、RAPIDS FIL 等。Triton Inference Server 能够在 NVIDIA GPUs、x86 和 ARM CPU 以及 AWS Inferentia 上提供云、数据中心、边缘和嵌入式设备的推理支持。它为多种查询类型提供优化性能,包括实时、批量、组合和音频/视频流。

2. 项目快速启动

以下是快速启动 NVIDIA Triton Inference Server 的步骤:

步骤 1: 创建示例模型仓库

git clone -b r25.02 https://github.com/triton-inference-server/server.git
cd server/docs/examples
./fetch_models.sh

步骤 2: 使用 NGC Triton 容器启动 triton

docker run --gpus=1 --rm --net=host -v ${PWD}/model_repository:/models nvcr.io/nvidia/tritonserver:25.02-py3 tritonserver --model-repository=/models --model-control-mode explicit --load-model densenet_onnx

步骤 3: 发送推理请求

在另一个控制台中,从 NGC Triton SDK 容器启动 image_client 示例:

docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:25.02-py3-sdk /workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION /workspace/images/mug.jpg

推理应返回以下结果:

Image '/workspace/images/mug.jpg':
15.346230 (504) = COFFEE MUG
13.224326 (968) = CUP
10.422965 (505) = COFFEEPOT

3. 应用案例和最佳实践

  • 模型部署:使用 Docker 容器是推荐的方式来构建和使用 Triton Inference Server。
  • 性能优化:使用 Model Analyzer 工具帮助优化模型配置。
  • 安全性:阅读安全部署考虑章节,了解如何在生产环境中安全地部署 Triton。

4. 典型生态项目

  • NVIDIA Deep Learning Examples:提供流行的模型(如 ResNet、BERT 和 DLRM)的端到端示例。
  • NVIDIA Developer Zone:包含额外的文档、演示和示例。

以上就是 NVIDIA Triton Inference Server 的使用指南,希望对您的项目有所帮助。

server server 项目地址: https://gitcode.com/gh_mirrors/server117/server

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋韵庚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值