LSD在OpenCV与MATLAB中的线段检测工具箱

vikapy是一个基于Pandas的开源数据处理库,通过优化和并行计算提高性能,适用于大数据分析、机器学习。它具有内存管理、易用API、灵活的子集处理和活跃的社区支持,适用于数据清洗、统计分析、预处理和可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LSD在OpenCV与MATLAB中的线段检测工具箱

LSD-OpenCV-MATLAB Line Segment Detector for OpenCV, MATLAB, and Python. 项目地址: https://gitcode.com/gh_mirrors/ls/LSD-OpenCV-MATLAB

项目介绍

LSD-OpenCV-MATLAB 是一个基于Google Summer of Code 2013项目开发的线段检测器(Line Segment Detector, LSD)工具箱,它支持OpenCV和MATLAB环境。该工具箱实现了由Rafael Grompone von Gioi等人所发展的线段检测算法,并提供了便于使用的接口,使得开发者能够轻松地在其计算机视觉应用中集成精确的线段检测功能。

项目快速启动

环境准备

确保您的系统上安装了以下组件:

  • OpenCV: 交叉平台的开源计算机视觉库。
  • CMake: 跨平台的开放源码构建系统。
  • MATLAB: 对于MATLAB部分的应用。
  • Git: 用于从GitHub克隆项目。

克隆项目

首先,通过Git克隆项目到本地:

git clone https://github.com/primetang/LSD-OpenCV-MATLAB.git
cd LSD-OpenCV-MATLAB

编译与安装

OpenCV与Python编译示例(Linux)
  1. 在项目根目录下创建一个构建目录并进入:
    mkdir build && cd build
    
  2. 使用CMake配置项目,然后编译:
    cmake ..
    make
    

之后,您将找到编译后的可执行文件,可以测试线段检测算法。

MATLAB使用示例

对于MATLAB用户,在正确编译后,直接运行相应目录下的脚本文件:

run('/matlab/x64(x86)/lsd_example.m')

请注意,如果您的平台是x86,需要先用CMake编译相应的.mexw32文件。

示例代码

OpenCV C++ 快速启动代码

将以下代码保存为lsd_opencv_test.cpp,并在编译后运行生成的可执行文件。

#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include "lsd.h"

int main() {
    cv::Mat src = cv::imread("path_to_your_image.jpg", cv::IMREAD_COLOR);
    cv::Mat gray;
    cv::cvtColor(src, gray, cv::COLOR_BGR2GRAY);
    gray.convertTo(gray, CV_64FC1);

    // LSD处理部分
    image_double* image = new_image_double(gray.cols, gray.rows);
    image->data = gray.ptr<double>(0);
    ntuple_list* ntl = lsd(image);
    
    cv::Mat lsdResult = cv::Mat::zeros(gray.size(), CV_8UC1);
    cv::Point pt1, pt2;
    for(int j = 0; j < ntl->size; ++j) {
        pt1.x = ntl->values[0 + j * ntl->dim];
        pt1.y = ntl->values[1 + j * ntl->dim];
        pt2.x = ntl->values[2 + j * ntl->dim];
        pt2.y = ntl->values[3 + j * ntl->dim];
        double width = ntl->values[4 + j * ntl->dim];
        cv::line(lsdResult, pt1, pt2, cv::Scalar(255), width, CV_AA);
    }
    free_ntuple_list(ntl);
    
    // 显示结果
    cv::imshow("Original Image", src);
    cv::imshow("Detected Lines", lsdResult);
    cv::waitKey(0);
    return 0;
}

应用案例和最佳实践

此工具箱广泛应用于图像分析、自动驾驶车辆的道路识别、建筑图纸自动解析等领域。最佳实践包括预处理图像以减少噪声、调整LSD参数来适应不同场景下的检测精度与效率需求。

典型生态项目

虽然本项目本身是个独立的工具箱,但其在计算机视觉社区内可以与多个项目结合使用,例如在物体识别系统中作为前期处理步骤,或是用于增强现实应用中的环境理解。此外,开发者可以将其整合进ROS(Robot Operating System)项目,实现机器人导航中的障碍物或特征线检测。


通过以上步骤,您可以迅速开始在自己的项目中利用LSD-OpenCV-MATLAB进行高效的线段检测。记得调整代码中的图片路径以匹配实际环境,享受高效精准的线段检测带来的便利。

LSD-OpenCV-MATLAB Line Segment Detector for OpenCV, MATLAB, and Python. 项目地址: https://gitcode.com/gh_mirrors/ls/LSD-OpenCV-MATLAB

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏赢安Simona

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值