探索代码世界的智能伙伴:RepoChat-200k,无需RAG!
🚀 使用Claude 200k与GitHub仓库进行聊天,无需复杂RAG模型!🚀
为什么选择RepoChat-200k?
当你需要的不仅仅是聊天,而是需要一个能够理解和编写代码的智能助手时,RepoChat-200k应运而生。借助Claude 200k的强大模型和长达200k的上下文窗口,你可以将示例和代码放入上下文中,让智能助手为你编写代码,而不是简单的复制粘贴。
1. 不只是聊天,更是在编写代码
面对llama-index或langchain中繁多的API感到困惑?别担心,只需将相关组件的例子和文档加入上下文,让Claude Opus帮你完成代码编写!
2. 无需手动复制粘贴,只需选择文件
通过简单的下载或克隆你的GitHub仓库,然后选择所需文件,RepoChat-200k会处理余下的工作。
3. 告别RAG,自主决定所需信息
传统的代码库搜索引擎可能并不总是那么精准。在RepoChat-200k中,你可以根据任务需求自行决定要使用的文件:
- 开发前端应用?选择组件和示例。
- 编写代理?选择Jupyter Notebook中的langgraph。
- 需要RAG?直接选取Jupyter Notebook中的llamaindex。
4. 更多应用案例!
无论是利用llamaindex文档编写RAG图,还是用Shadcn文档构建前端界面,RepoChat-200k都能轻松应对。
功能亮点
- 仓库下载:提供GitHub仓库URL,自动下载并分析。
- 文件与目录选择:按需选择仓库内的文件或目录。
- 语言过滤:依据编程语言筛选文件以提升LLM理解。
- 令牌计数:控制发送到LLM的信息量,兼顾性能和成本。
- 交互式聊天:通过类似聊天的应用界面与LLM互动提问或请求代码生成。
- 实时响应:LLM的回复以流形式展示,带来更真实的使用体验。
目前仅支持Openrouter,未来计划添加更多功能和优化。
快速上手
-
环境配置:运行
pip install -r requirements.txt
安装依赖。 -
创建.env文件:在项目根目录创建
.env
文件,输入OpenRouter API密钥(推荐):OPENROUTER_API_KEY=your_openrouter_api_key_here
如果你想使用OpenAI GPT模型,也请添加
OPENAI_API_KEY
。 -
启动应用:使用Streamlit运行
app.py
:streamlit run app.py
-
开始使用:遵循应用提示下载GitHub仓库,选择文件,开始与LLM对话。
如有问题,只需删除./repos目录下的仓库,重新下载即可。
自定义设置
可调整以下配置选项来定制应用行为:
- 模型:选择特定的LLM模型(如:"anthropic/claude-3-haiku", "anthropic/claude-3-opus")。
- 温度:控制LLM响应的创新程度。
- 系统提示:初始提示,用于设定LLM的行为模式。
这些设置可在Streamlit应用程序的侧边栏进行调整。
贡献指南
欢迎在GitHub仓库上提交问题或拉取请求贡献代码。
许可证
本项目遵循MIT许可证。
使用RepoChat-200k,释放你的创造力,让代码编写变得更简单,更有趣!现在就试试吧!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考