DANCE 开源项目使用教程

DANCE 开源项目使用教程

dance DANCE: A Deep Learning Library and Benchmark Platform for Single-Cell Analysis 项目地址: https://gitcode.com/gh_mirrors/dan/dance

1. 项目介绍

DANCE 是一个用于单细胞分析的深度学习库和基准平台。它旨在构建一个深度学习社区和基准平台,用于计算模型在单细胞分析中的应用。DANCE 目前包含三个模块:单模态分析、单细胞多模态组学和空间转录组学。

2. 项目快速启动

安装 DANCE

DANCE 提供了自动安装脚本,简化了安装过程。假设用户已经安装了 conda,可以通过以下步骤快速安装 DANCE:

# 克隆仓库
git clone https://github.com/OmicsML/dance.git && cd dance

# 运行自动安装脚本,安装 DANCE 及其依赖
source install.sh cu118 dance-env

运行示例

安装完成后,可以运行一个示例来验证安装是否成功。以下是一个简单的示例,使用 scDeepSort 进行细胞类型注释:

# 进入示例目录
cd examples/single_modality/cell_type_annotation

# 运行示例
python scdeepsort.py --species mouse --tissue Brain --train_dataset 753 3285 --test_dataset 2695

3. 应用案例和最佳实践

案例1:单细胞数据补全

DANCE 提供了多种单细胞数据补全的方法,如 scGNN 和 GNNImpute。以下是一个使用 scGNN 进行数据补全的示例:

from dance.modules.single_modality.imputation.scgnn import ScGNN

# 初始化模型
model = ScGNN()

# 加载数据
data = model.load_data('path_to_data')

# 训练模型
model.train(data)

# 进行数据补全
imputed_data = model.impute(data)

案例2:细胞类型注释

使用 DANCE 中的 scDeepSort 进行细胞类型注释:

from dance.modules.single_modality.cell_type_annotation.scdeepsort import ScDeepSort

# 初始化模型
model = ScDeepSort()

# 加载数据
data = model.load_data('path_to_data')

# 训练模型
model.train(data)

# 进行细胞类型注释
annotations = model.annotate(data)

4. 典型生态项目

生态项目1:OmicsML

OmicsML 是一个专注于组学数据分析的社区和平台,DANCE 是 OmicsML 生态中的重要组成部分。OmicsML 提供了丰富的教程和资源,帮助用户更好地理解和使用 DANCE。

生态项目2:PyTorch Geometric

DANCE 依赖于 PyTorch Geometric 进行图神经网络的实现。PyTorch Geometric 是一个强大的图神经网络库,提供了丰富的图神经网络模型和工具。

生态项目3:DGL

DGL(Deep Graph Library)是另一个重要的图神经网络库,DANCE 也支持使用 DGL 进行图神经网络的实现。DGL 提供了高效的图神经网络计算框架,适用于大规模图数据的处理。

dance DANCE: A Deep Learning Library and Benchmark Platform for Single-Cell Analysis 项目地址: https://gitcode.com/gh_mirrors/dan/dance

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计蕴斯Lowell

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值