DANCE 开源项目使用教程
1. 项目介绍
DANCE 是一个用于单细胞分析的深度学习库和基准平台。它旨在构建一个深度学习社区和基准平台,用于计算模型在单细胞分析中的应用。DANCE 目前包含三个模块:单模态分析、单细胞多模态组学和空间转录组学。
2. 项目快速启动
安装 DANCE
DANCE 提供了自动安装脚本,简化了安装过程。假设用户已经安装了 conda,可以通过以下步骤快速安装 DANCE:
# 克隆仓库
git clone https://github.com/OmicsML/dance.git && cd dance
# 运行自动安装脚本,安装 DANCE 及其依赖
source install.sh cu118 dance-env
运行示例
安装完成后,可以运行一个示例来验证安装是否成功。以下是一个简单的示例,使用 scDeepSort 进行细胞类型注释:
# 进入示例目录
cd examples/single_modality/cell_type_annotation
# 运行示例
python scdeepsort.py --species mouse --tissue Brain --train_dataset 753 3285 --test_dataset 2695
3. 应用案例和最佳实践
案例1:单细胞数据补全
DANCE 提供了多种单细胞数据补全的方法,如 scGNN 和 GNNImpute。以下是一个使用 scGNN 进行数据补全的示例:
from dance.modules.single_modality.imputation.scgnn import ScGNN
# 初始化模型
model = ScGNN()
# 加载数据
data = model.load_data('path_to_data')
# 训练模型
model.train(data)
# 进行数据补全
imputed_data = model.impute(data)
案例2:细胞类型注释
使用 DANCE 中的 scDeepSort 进行细胞类型注释:
from dance.modules.single_modality.cell_type_annotation.scdeepsort import ScDeepSort
# 初始化模型
model = ScDeepSort()
# 加载数据
data = model.load_data('path_to_data')
# 训练模型
model.train(data)
# 进行细胞类型注释
annotations = model.annotate(data)
4. 典型生态项目
生态项目1:OmicsML
OmicsML 是一个专注于组学数据分析的社区和平台,DANCE 是 OmicsML 生态中的重要组成部分。OmicsML 提供了丰富的教程和资源,帮助用户更好地理解和使用 DANCE。
生态项目2:PyTorch Geometric
DANCE 依赖于 PyTorch Geometric 进行图神经网络的实现。PyTorch Geometric 是一个强大的图神经网络库,提供了丰富的图神经网络模型和工具。
生态项目3:DGL
DGL(Deep Graph Library)是另一个重要的图神经网络库,DANCE 也支持使用 DGL 进行图神经网络的实现。DGL 提供了高效的图神经网络计算框架,适用于大规模图数据的处理。