探索像素级完美的结构化运动:PixSFM

探索像素级完美的结构化运动:PixSFM

去发现同类优质开源项目:https://gitcode.com/

PixSFM是一个基于Python的工具包,源自ICCV 2021的最佳学生论文,它改进了结构化运动(SfM)和视觉定位的精度,通过深度特征的直接对齐优化关键点、相机姿态和3D点。这个框架在Pixel-Perfect Structure-from-Motion with Featuremetric Refinement一文中详细阐述,由Philipp Lindenberger等人提出。

项目介绍

PixSFM为用户提供了一种方法,可以利用COLMAP和作者的hloc工具箱从头开始重建或细化场景,也可以对新的查询图像进行定位和精细化。框架包括两个步骤:关键点调整和束调整,都利用了稠密深度特征的一致性来最小化特征度量成本。该项目不仅适用于学术研究,也适用于需要高精度SfM和视觉定位的应用。

技术分析

PixSFM的核心是两个优化阶段:

  1. 关键点调整:在SfM之前,同步优化所有匹配在一起的关键点。
  2. 束调整:在SfM之后,优化3D点和相机姿态。

这两个步骤都依赖于预先从图像中提取的深度特征,并且整个过程在内存管理和并行化方面进行了优化,以处理大型场景。

应用场景

PixSFM适用于各种应用场景,如:

  • 场景重建,特别是需要高精度结果的场合。
  • 路径规划或导航,特别是在光照变化大或环境复杂的环境中。
  • 计算机视觉和机器人技术中的视觉定位。
  • 数字孪生和虚拟现实应用。

项目特点

  • 易用性:与COLMAP和hloc无缝集成,简化了模型的重建和查询图像的定位。
  • 高效优化:通过特征度量成本的最小化实现关键点和束的精细调整。
  • GPU支持:支持使用GPU提取密集特征,提高运行速度。
  • 扩展性:能够处理大规模场景,通过有效的内存管理及并行计算策略降低资源需求。
  • 全面评估:提供在ETH3D数据集上的评估工具,以验证优化效果。

安装与使用

要安装PixSFM,您需要Python 3.6以上版本、GCC 6.1以上版本以及COLMAP 3.8源代码。安装完成后,您可以利用提供的教程Jupyter notebook (demo.ipynb) 开始尝试简单的SfM重建和细化任务。

总的来说,PixSFM是一个强大的工具,对于需要精确SfM和视觉定位的研究者和开发人员来说,无疑是一个值得探索的开源项目。无论是用于学术研究还是工业应用,它都能提供卓越的性能和灵活性。立即尝试并体验像素级完美的视觉世界吧!

去发现同类优质开源项目:https://gitcode.com/

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬如雅Brina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值