推荐开源项目:Optimum Transformers - 加速NLP流程的利器!

推荐开源项目:Optimum Transformers - 加速NLP流程的利器!

optimum-transformersAccelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.项目地址:https://gitcode.com/gh_mirrors/op/optimum-transformers

1、项目介绍

Optimum Transformers 是一个基于Huggingface TransformersONNX Runtime构建的高效NLP处理库。它提供加速的CPU和GPU推理,旨在让自然语言处理的性能更上一层楼。只需几行代码,开发者就可以轻松实现各种NLP任务的快速执行。

2、项目技术分析

Optimum Transformers 深度集成ONNX(Open Neural Network Exchange)图形表示,使得模型能够以优化的方式运行在不同的硬件平台上。通过自动创建ONNX图并进行推理,项目可以实现比标准Torch推理更快的速度。此外,它还支持量化优化,以进一步提升性能。

3、项目及技术应用场景

Optimum Transformers 可广泛应用于多个领域,包括但不限于:

  • 文本分类:如情感分析,可用于产品评论或社交媒体文本的情绪判断。
  • 命名实体识别:从文本中提取关键实体,如人名、组织名等。
  • 问答系统:在给定上下文中找到问题的答案。
  • 语义理解:对输入序列进行深入的结构化表示。
  • 文本生成:自动生成符合规则的文本内容。
  • 零样本分类:无需额外训练数据即可进行文本分类。
  • 填空任务:利用预训练模型预测缺失单词。

4、项目特点

  • 易用性: 提供与Transformers类似的API,使现有用户能快速上手。
  • 速度提升: 利用ONNX Runtime在CPU和GPU上的优化,显著提高模型推理速度。
  • 自动化: 自动下载和缓存模型,以及创建ONNX图。
  • 量化优化: 支持模型量化的优化,进一步减小内存占用,提升计算效率。
  • 全面的支持: 覆盖多种常见的NLP任务,满足多样化的应用需求。

使用示例

from optimum_transformers import pipeline

# 初始化一个情感分析管道
nlp = pipeline("sentiment-analysis")
print(nlp("Optimum Transformers 真棒!"))
# 输出:{'label': 'POSITIVE', 'score': 0.999721109867096}

# 或者指定特定模型
nlp = pipeline("question-answering", model="deepset/roberta-base-squad2")
print(nlp(question="什么是ONNX Runtime?", context="..."))
# 输出:{'answer': '...', 'end': ..., 'score': ..., 'start': ...}

这个强大的开源项目为NLP爱好者和开发者提供了快速而高效的工具,无论是在研究还是实际应用中,都是值得一试的选择。

要了解更多详情,可参考项目文档、基准测试结果,甚至参与到项目贡献中来。立即尝试 Optimum Transformers,体验高效且灵活的NLP处理吧!

pip install optimum-transformers

或者直接从GitHub安装最新版本:

pip install git+https://github.com/AlekseyKorshuk/optimum-transformers

optimum-transformersAccelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.项目地址:https://gitcode.com/gh_mirrors/op/optimum-transformers

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滑辰煦Marc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值