探索心灵的轻巧工具:Quirk

探索心灵的轻巧工具:Quirk

quirk ✨🐙 A GPL Licensed Cognitive Behavioral Therapy app for iOS and Android. Currently a teaching tool quirk 项目地址: https://gitcode.com/gh_mirrors/qu/quirk

项目介绍

Quirk 是一款跨平台的开源应用,专为认知行为疗法(CBT)设计,采用 React Native 和 Expo 技术构建。CBT 是一种广泛应用于心理治疗的疗法,旨在帮助用户识别和改变负面思维模式。Quirk 的设计理念是简洁、高效,特别适合在公共场合快速使用,且不局限于特定的心理问题,如抑郁症。

项目技术分析

Quirk 的技术栈主要包括 React Native 和 Expo。React Native 是 Facebook 推出的跨平台移动应用开发框架,允许开发者使用 JavaScript 和 React 构建原生应用。Expo 则是一个简化 React Native 开发的工具链,提供了丰富的 API 和组件,帮助开发者快速构建和部署应用。

Quirk 的代码结构清晰,遵循 React Native 的最佳实践,易于维护和扩展。项目采用 GPL 许可证,确保了代码的开放性和自由度,鼓励社区贡献和改进。

项目及技术应用场景

Quirk 适用于任何希望通过 CBT 改善心理健康的人群,尤其是那些需要快速记录和分析自己思维模式的用户。无论是在工作间隙、公共交通中,还是在日常生活中,Quirk 都能提供一个私密且高效的环境,帮助用户进行自我反思和治疗。

技术上,Quirk 的跨平台特性使其能够在 iOS 和 Android 设备上无缝运行,覆盖了绝大多数移动用户。React Native 和 Expo 的结合,不仅加快了开发速度,还确保了应用的高性能和良好的用户体验。

项目特点

  1. 简洁高效:Quirk 的设计注重用户体验,界面简洁直观,操作流程高效,特别适合在短时间内完成思维记录。

  2. 跨平台支持:无论是 iOS 还是 Android 用户,都能享受到 Quirk 带来的便利,无需担心平台限制。

  3. 开源透明:作为开源项目,Quirk 的代码公开透明,用户可以自由查看、修改和贡献代码,确保了应用的可靠性和安全性。

  4. 社区驱动:Quirk 拥有一个活跃的社区,来自世界各地的贡献者为其提供了多语言支持,使得更多用户能够无障碍地使用。

  5. 持续更新:尽管 Quirk 的维护状态有所变化,但其代码库仍然是一个宝贵的资源,开发者可以基于此进行二次开发,满足个性化需求。

结语

Quirk 不仅仅是一个应用,它是一个帮助人们更好地理解和管理自己思维的工具。无论你是开发者、心理健康专业人士,还是普通用户,Quirk 都值得你一试。通过简洁的设计和强大的功能,Quirk 为你提供了一个探索内心世界的窗口,帮助你在繁忙的生活中找到一丝宁静和自我提升的机会。

quirk ✨🐙 A GPL Licensed Cognitive Behavioral Therapy app for iOS and Android. Currently a teaching tool quirk 项目地址: https://gitcode.com/gh_mirrors/qu/quirk

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滑辰煦Marc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值