探索文档布局分割的新维度:DocLayNet 开源项目

探索文档布局分割的新维度:DocLayNet 开源项目

DocLayNet DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis 项目地址: https://gitcode.com/gh_mirrors/do/DocLayNet

在数字化时代,理解和解析文档的布局变得至关重要,尤其是在自动文本处理和信息提取领域。为此,我们向您隆重推荐 DocLayNet —— 一个由人类精细标注的大型文档布局分割数据集,旨在推动机器学习模型在文档理解方面的发展。

项目介绍

DocLayNet 是一个包含 80,863 页不同来源文档的丰富资源库,这些页面来自金融报告、科学文章、法律法规、政府招标书、手册和专利等多种类别。数据集中不仅提供了每个页面的图像,还附带了详细的边界框注释,涵盖 11 种不同的布局元素标签。此外,部分页面还进行了多次标注,以评估标注的不确定性和模型性能上限。

技术分析

DocLayNet 使用了 COCO 格式的边界框注释,这种标准格式使得该数据集易于被现有的计算机视觉框架集成和处理。数据集提供了训练、验证和测试三个独立的子集,确保了各类别标签的均衡分布,并防止了跨集合的数据泄漏。同时,数据集还包含了原始 PDF 文件和相应的 JSON 文件,便于进行更深入的内容和结构分析。

应用场景

DocLayNet 的主要应用场景包括但不限于:

  • 自动化办公文档处理:通过识别文本、表格、标题等元素,提高文档检索和信息提取的效率。
  • 法律文档解析:快速定位法规中的关键条款和案例引用。
  • 金融报表分析:自动化分析财务报表结构,帮助决策者更快地理解数据。
  • 知识图谱构建:从科学论文中提取实体关系,支持学术研究的系统化整理。

项目特点

  1. 高质量人工标注:所有页面均经受过专业培训的专家手工标注,保证了标注的质量。
  2. 多样化的布局:涵盖了大量真实世界的复杂文档布局,挑战模型的泛化能力。
  3. 详细分类体系:11 类标签覆盖了文档的主要布局特征,为细粒度的分析提供可能。
  4. 多层标注:部分页面有冗余标注,用于评估不确定性并设定性能基准。
  5. 预设分组:预先划分好的训练、验证和测试集确保了评估的公正性。

要开始利用 DocLayNet 进行实验,只需一行代码即可导入到 Hugging Face 数据集平台,轻松启动您的项目。现在就下载这个数据集,开启您的文档布局分割之旅吧!

立即下载 DocLayNet 加入 Hugging Face 平台

DocLayNet 的推出不仅是一个数据集,更是一个推动文档智能处理领域发展的强大工具。无论您是研究人员还是开发者,这个开源项目都将为您提供无尽的可能性。让我们共同探索文档理解的未来!

DocLayNet DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis 项目地址: https://gitcode.com/gh_mirrors/do/DocLayNet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

戴洵珠Gerald

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值