Vectorious 开源项目教程
vectorious Linear algebra in TypeScript. 项目地址: https://gitcode.com/gh_mirrors/ve/vectorious
1、项目介绍
Vectorious 是一个用 TypeScript 编写的线性代数库,通过 C++ 绑定到 BLAS 和 LAPACK 库,提供了高性能的线性代数运算。该项目旨在为 JavaScript 和 TypeScript 开发者提供一个强大的工具,用于处理矩阵和向量运算。Vectorious 支持多种输出格式,包括 CommonJS、浏览器和 ES 模块,适用于不同的开发环境。
2、项目快速启动
安装
要安装 Vectorious,可以使用 npm 进行安装。以下是安装命令:
# 使用 C++ 绑定安装
npm install vectorious
# 不使用 C++ 绑定安装
npm install vectorious --no-optional
基本使用
以下是一个简单的示例,展示如何使用 Vectorious 创建矩阵并进行基本运算:
import { array, random, range } from 'vectorious';
// 创建一个随机的 2x2 矩阵
const x = random(2, 2);
console.log(x);
// 创建一个从 0 到 8 的一维向量,并将其重塑为 3x3 矩阵
const y = range(0, 9).reshape(3, 3);
console.log(y);
// 将 x 的第二行加到第一行
y.slice(0, 1).add(y.slice(1, 2));
console.log(y);
// 交换 x 的第一行和第二行
y.swap(0, 1);
console.log(y);
3、应用案例和最佳实践
应用案例
机器学习
Vectorious 可以用于实现简单的机器学习算法,如线性回归和逻辑回归。以下是一个简单的线性回归示例:
import { array, random, range } from 'vectorious';
// 生成随机数据
const X = random(100, 2);
const y = range(0, 100).reshape(100, 1);
// 线性回归
const theta = array([0, 0]);
const alpha = 0.01;
for (let i = 0; i < 1000; i++) {
const h = X.dot(theta);
const error = h.subtract(y);
const gradient = X.transpose().dot(error).divide(100);
theta.subtract(gradient.multiply(alpha));
}
console.log(theta);
最佳实践
- 使用 C++ 绑定:为了获得最佳性能,建议在安装时使用 C++ 绑定。
- 避免不必要的复制:大多数操作是原地操作,避免不必要的复制可以提高性能。
- 使用 ES 模块:从版本 6.1.0 开始,Vectorious 支持 ES 模块,建议使用 ES 模块以获得更好的模块化支持。
4、典型生态项目
相关项目
- TensorFlow.js:一个用于机器学习的 JavaScript 库,可以与 Vectorious 结合使用,提供更高级的机器学习功能。
- Math.js:一个广泛的数学库,提供了丰富的数学函数和数据类型,可以与 Vectorious 结合使用,提供更全面的数学支持。
- NumPy:Python 中的一个强大的数值计算库,虽然不是 JavaScript 项目,但提供了许多与 Vectorious 类似的功能,可以作为参考。
通过这些模块的结合使用,开发者可以在 JavaScript 和 TypeScript 环境中构建复杂的数值计算和机器学习应用。
vectorious Linear algebra in TypeScript. 项目地址: https://gitcode.com/gh_mirrors/ve/vectorious