探索医疗特征的未来:FAE——一键式放射组学分析工具
项目地址:https://gitcode.com/gh_mirrors/fae/FAE
项目介绍
FeAture Explorer(FAE)是一款专为放射科医生打造的全方位医学影像分析平台。灵感源于Radiomics,FAE通过直观易用的图形用户界面,提供了从特征提取到模型开发、评估的一站式解决方案。该项目由东华师范大学和西门子健康创新公司联合发起,旨在简化复杂的数据处理流程,加速放射组学研究的进程。
项目技术分析
FAE构建在Python环境下,集成了诸如imbalanced-learn、lifelines、scikit-learn等强大的库。其主要架构包括以下几个部分:
- HomePage:项目的起始页面,引导用户进入各个功能模块。
- Feature:包含了系列匹配器(SeriesMatcher)和图形用户接口(GUI),负责图像文件与ROI文件的匹配以及特征提取和合并。
- BC (Binary Classification) 和 SA (Survival Analysis):二分类和生存分析管道,涵盖数据容器(DataContainer)、描述性报告(Description)、特征分析(FeatureAnalysis)、可视化(Visualization)等功能。这两个模块实现了数据预处理、模型训练、交叉验证以及结果展示等步骤。
- Plugin:插件管理器,支持扩展和自定义功能。
项目及技术应用场景
FAE适用于医学影像研究,尤其在肿瘤诊断、疾病预测等领域有广泛应用。通过自动特征提取和机器学习模型训练,FAE能够帮助研究人员快速建立二分类和生存分析模型,提升诊断效率。此外,其强大的数据预处理和平衡能力也能有效处理不平衡数据集,确保模型的公平性和准确性。
项目特点
- 易用性:提供Windows和Ubuntu版本,界面友好,操作流程清晰,一点击即可完成各项任务。
- 全面性:覆盖了从数据导入、特征提取到建模和评价的全过程。
- 灵活性:内置多种预处理方法、特征选择策略和机器学习算法,适应不同研究需求。
- 可扩展性:具备插件管理机制,允许用户自定义开发新的功能模块。
如有兴趣在您的项目中运用FAE,我们诚挚邀请您尝试并引用我们的工作,并欢迎反馈问题或贡献代码。现在就加入FAE的社区,一同探索医疗特征的无限可能!
查看GitHub仓库 | 下载最新版 或 百度网盘 | 观看教程视频
FAE FeAture Explorer 项目地址: https://gitcode.com/gh_mirrors/fae/FAE