一、ConsistentFlowDistillation 项目启动与配置教程
1. 项目目录结构及介绍
ConsistentFlowDistillation 项目目录结构如下:
ConsistentFlowDistillation/
├── data/ # 存储数据集
├── distiller/ # 知识蒸馏相关代码
│ ├── __init__.py
│ ├── distiller.py
│ └── utils.py
├── experiments/ # 实验配置文件和启动脚本
│ ├── __init__.py
│ ├── train.py # 训练脚本
│ └── config/ # 配置文件
│ ├── __init__.py
│ ├── default_config.py
│ └── train_config.py
├── models/ # 模型代码
│ ├── __init__.py
│ ├── base_model.py
│ └── student_model.py
├── results/ # 存储实验结果
├── requirements.txt # 项目依赖
└── train.sh # 训练启动脚本
data/
: 存储项目所需的数据集。distiller/
: 包含实现知识蒸馏相关算法的代码。experiments/
: 包含实验配置文件和启动脚本。train.py
: 项目训练的主要脚本。config/
: 包含项目的配置文件。
models/
: 包含项目中使用的模型代码。results/
: 存储实验结果,如训练日志、模型权重等。requirements.txt
: 列出项目所需的第三方库依赖。train.sh
: 用于启动训练脚本的shell脚本。
2. 项目启动文件介绍
项目的启动文件为 train.sh
。该脚本的主要功能是调用 Python 的 train.py
脚本来启动训练过程。以下是 train.sh
的内容示例:
#!/bin/bash
python experiments/train.py
用户可以通过在终端中运行以下命令来启动训练:
bash train.sh
3. 项目配置文件介绍
项目的配置文件位于 experiments/config
目录下,主要包括 default_config.py
和 train_config.py
。
default_config.py
: 包含了项目的基本配置,如数据集路径、模型结构、训练参数等。
# 默认配置
default_config = {
'data_path': 'data/',
'model': 'base_model',
'batch_size': 32,
'epochs': 100,
# 更多配置...
}
train_config.py
: 可以根据实际训练需求对default_config.py
中的配置进行覆盖或添加新的配置。
# 训练配置
train_config = {
'batch_size': 64, # 覆盖默认配置中的 batch_size
'learning_rate': 0.001, # 新增学习率配置
# 更多配置...
}
用户可以在 train.py
脚本中导入这些配置文件,并根据配置进行模型训练等操作。