self-rewarding-lm-pytorch 项目教程

self-rewarding-lm-pytorch 项目教程

self-rewarding-lm-pytorch Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI self-rewarding-lm-pytorch 项目地址: https://gitcode.com/gh_mirrors/se/self-rewarding-lm-pytorch

1. 项目目录结构及介绍

self-rewarding-lm-pytorch/
├── LICENSE
├── README.md
├── diagram.png
├── setup.py
├── self_rewarding_lm_pytorch/
│   ├── __init__.py
│   ├── self_rewarding_lm_pytorch.py
│   └── ...
├── github/
│   └── workflows/
│       └── ...
└── ...

目录结构说明

  • LICENSE: 项目的开源许可证文件,本项目使用 MIT 许可证。
  • README.md: 项目的介绍文档,包含项目的概述、安装方法、使用示例等。
  • diagram.png: 项目相关的图示文件。
  • setup.py: 项目的安装配置文件,用于定义项目的依赖和安装过程。
  • self_rewarding_lm_pytorch/: 项目的主要代码目录,包含项目的核心实现。
    • init.py: Python 包的初始化文件。
    • self_rewarding_lm_pytorch.py: 项目的主要实现文件,包含训练框架的实现。
  • github/workflows/: GitHub Actions 的工作流配置文件,用于自动化 CI/CD 流程。

2. 项目的启动文件介绍

项目的启动文件是 self_rewarding_lm_pytorch.py,该文件包含了 Self-Rewarding Language Model 的训练框架实现。以下是该文件的主要功能介绍:

  • SelfRewardingTrainer: 这是项目的核心类,负责训练 Self-Rewarding Language Model。它包含了模型训练的各个阶段,如 SFT(Supervised Fine-Tuning)、DPO(Direct Preference Optimization)等。
  • create_mock_dataset: 这是一个辅助函数,用于创建模拟数据集,方便用户在没有真实数据集的情况下进行测试。
  • decode_tokensencode_str: 这两个函数用于将模型的输出解码为字符串,或将字符串编码为模型输入的 Tensor。

3. 项目的配置文件介绍

项目的配置文件主要是 setup.py,该文件定义了项目的依赖和安装过程。以下是该文件的主要内容:

from setuptools import setup, find_packages

setup(
    name='self-rewarding-lm-pytorch',
    version='0.2.12',
    packages=find_packages(),
    install_requires=[
        'torch',
        'x-transformers',
        # 其他依赖项
    ],
    author='Phil Wang',
    author_email='lucidrains@gmail.com',
    description='Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI',
    license='MIT',
    keywords='artificial intelligence, deep learning, self rewarding, direct preference optimization',
    url='https://github.com/lucidrains/self-rewarding-lm-pytorch',
)

配置文件说明

  • name: 项目的名称。
  • version: 项目的版本号。
  • packages: 需要包含的 Python 包,使用 find_packages() 自动查找。
  • install_requires: 项目依赖的其他 Python 包。
  • author: 项目的作者。
  • author_email: 作者的联系邮箱。
  • description: 项目的简短描述。
  • license: 项目的开源许可证。
  • keywords: 项目的关键词,用于描述项目的领域和特性。
  • url: 项目的 GitHub 仓库地址。

通过以上配置,用户可以使用 pip install self-rewarding-lm-pytorch 命令来安装该项目及其依赖。

self-rewarding-lm-pytorch Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI self-rewarding-lm-pytorch 项目地址: https://gitcode.com/gh_mirrors/se/self-rewarding-lm-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邓尤楚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值