DSen2-CR 项目教程
项目介绍
DSen2-CR 是一个用于去除 Sentinel-2 卫星图像中云层的深度学习网络。该项目使用 Python 和 Keras 编写,并提供了预训练的检查点以及 SEN12MS-CR 数据集的链接。DSen2-CR 利用深度残差神经网络和 SAR-光学数据融合技术,有效地提高了云层去除的准确性和效率。
项目快速启动
克隆项目
首先,克隆项目到本地:
git clone https://github.com/ameraner/dsen2-cr.git
cd dsen2-cr
训练模型
要训练一个新的模型,可以使用以下命令:
cd Code/
python dsen2cr_main.py
恢复训练
要从之前保存的检查点恢复训练,使用以下命令:
python dsen2cr_main.py --resume path/to/checkpoint.h5
预测和评估
要预测图像并评估训练好的网络的指标,使用以下命令:
python dsen2cr_main.py --predict path/to/checkpoint.h5
应用案例和最佳实践
DSen2-CR 可以广泛应用于环境监测、农业分析和灾害评估等领域。例如,在农业领域,通过去除云层后的清晰图像,可以更准确地进行作物生长监测和产量预测。最佳实践包括定期更新数据集和调整超参数以适应不同的应用场景。
典型生态项目
DSen2-CR 可以与其他卫星图像处理项目结合使用,例如与 Sentinel-1 数据进行融合,以提高图像处理的全面性和准确性。此外,DSen2-CR 的 PyTorch 实现也为深度学习研究者提供了更多的选择和灵活性。
以上是 DSen2-CR 项目的简要教程,希望对您有所帮助。