CameraCtrl 开源项目教程
CameraCtrl 项目地址: https://gitcode.com/gh_mirrors/ca/CameraCtrl
1. 项目介绍
CameraCtrl 是一个开源项目,旨在为视频扩散模型提供精确的相机姿态控制。通过引入 CameraCtrl,用户可以更精确地控制视频生成过程中的相机轨迹,从而实现动态和定制化的视频故事叙述。该项目由 Hao He、Yinghao Xu、Yuwei Guo、Gordon Wetzstein、Bo Dai、Hongsheng Li 和 Ceyuan Yang 共同开发,并得到了香港中文大学、上海人工智能实验室和斯坦福大学的支持。
CameraCtrl 的核心功能包括:
- 精确的相机姿态控制
- 插拔式的相机姿态控制模块
- 对不同训练数据集的全面研究
2. 项目快速启动
环境配置
首先,确保你的环境满足以下要求:
- 64 位 Python 3.10 及以上版本
- PyTorch 1.13.0 及以上版本
- CUDA 11.7
使用以下命令安装所需的包:
conda env create -f environment.yaml
conda activate cameractrl
数据准备
下载相机轨迹和视频数据集 RealEstate10K,并使用以下脚本处理数据:
python tools/gather_realestate.py
python tools/get_realestate_clips.py
python tools/generate_realestate_json.py
模型准备
下载 Stable Diffusion V1.5 (SD1.5) 模型和 AnimateDiffV3 (ADV3) 适配器及运动模块的预训练权重。使用以下脚本合并 ADV3 适配器权重:
python tools/merge_lora2unet.py
推理示例
使用以下命令进行视频生成:
python -m torch.distributed.launch --nproc_per_node=8 --master_port=25000 inference.py \
--out_root [OUTPUT_PATH] \
--ori_model_path [SD1.5_PATH] \
--unet_subfolder [SUBFOLDER_NAME] \
--motion_module_ckpt [ADV3_MM_CKPT] \
--pose_adaptor_ckpt [CAMERACTRL_CKPT] \
--model_config configs/train_cameractrl/adv3_256_384_cameractrl_relora.yaml \
--visualization_captions assets/cameractrl_prompts.json \
--use_specific_seeds \
--trajectory_file assets/pose_files/0f47577ab3441480.txt \
--n_procs 8
3. 应用案例和最佳实践
应用案例
CameraCtrl 可以应用于多种场景,包括但不限于:
- 电影和视频制作中的动态相机控制
- 虚拟现实和增强现实中的相机轨迹生成
- 教育和培训中的动态视频内容生成
最佳实践
- 数据集选择:选择具有多样相机分布和与基础模型相似外观的视频数据集,以增强控制性和泛化能力。
- 模型训练:在训练相机控制模型时,确保使用高质量的预训练模型和适当的数据增强技术。
- 推理优化:在推理过程中,使用多进程和分布式计算来提高生成效率。
4. 典型生态项目
- AnimateDiff:CameraCtrl 与 AnimateDiff 项目紧密结合,提供了更强大的视频生成能力。
- Stable Diffusion:CameraCtrl 基于 Stable Diffusion 模型,进一步增强了视频生成的控制性。
- RealEstate10K:该项目的数据集为 CameraCtrl 提供了丰富的相机轨迹和视频数据,是训练和测试的重要资源。
通过以上模块的介绍,您可以快速上手 CameraCtrl 项目,并了解其在实际应用中的潜力和最佳实践。
CameraCtrl 项目地址: https://gitcode.com/gh_mirrors/ca/CameraCtrl