CameraCtrl 开源项目教程

CameraCtrl 开源项目教程

CameraCtrl CameraCtrl 项目地址: https://gitcode.com/gh_mirrors/ca/CameraCtrl

1. 项目介绍

CameraCtrl 是一个开源项目,旨在为视频扩散模型提供精确的相机姿态控制。通过引入 CameraCtrl,用户可以更精确地控制视频生成过程中的相机轨迹,从而实现动态和定制化的视频故事叙述。该项目由 Hao He、Yinghao Xu、Yuwei Guo、Gordon Wetzstein、Bo Dai、Hongsheng Li 和 Ceyuan Yang 共同开发,并得到了香港中文大学、上海人工智能实验室和斯坦福大学的支持。

CameraCtrl 的核心功能包括:

  • 精确的相机姿态控制
  • 插拔式的相机姿态控制模块
  • 对不同训练数据集的全面研究

2. 项目快速启动

环境配置

首先,确保你的环境满足以下要求:

  • 64 位 Python 3.10 及以上版本
  • PyTorch 1.13.0 及以上版本
  • CUDA 11.7

使用以下命令安装所需的包:

conda env create -f environment.yaml
conda activate cameractrl

数据准备

下载相机轨迹和视频数据集 RealEstate10K,并使用以下脚本处理数据:

python tools/gather_realestate.py
python tools/get_realestate_clips.py
python tools/generate_realestate_json.py

模型准备

下载 Stable Diffusion V1.5 (SD1.5) 模型和 AnimateDiffV3 (ADV3) 适配器及运动模块的预训练权重。使用以下脚本合并 ADV3 适配器权重:

python tools/merge_lora2unet.py

推理示例

使用以下命令进行视频生成:

python -m torch.distributed.launch --nproc_per_node=8 --master_port=25000 inference.py \
  --out_root [OUTPUT_PATH] \
  --ori_model_path [SD1.5_PATH] \
  --unet_subfolder [SUBFOLDER_NAME] \
  --motion_module_ckpt [ADV3_MM_CKPT] \
  --pose_adaptor_ckpt [CAMERACTRL_CKPT] \
  --model_config configs/train_cameractrl/adv3_256_384_cameractrl_relora.yaml \
  --visualization_captions assets/cameractrl_prompts.json \
  --use_specific_seeds \
  --trajectory_file assets/pose_files/0f47577ab3441480.txt \
  --n_procs 8

3. 应用案例和最佳实践

应用案例

CameraCtrl 可以应用于多种场景,包括但不限于:

  • 电影和视频制作中的动态相机控制
  • 虚拟现实和增强现实中的相机轨迹生成
  • 教育和培训中的动态视频内容生成

最佳实践

  • 数据集选择:选择具有多样相机分布和与基础模型相似外观的视频数据集,以增强控制性和泛化能力。
  • 模型训练:在训练相机控制模型时,确保使用高质量的预训练模型和适当的数据增强技术。
  • 推理优化:在推理过程中,使用多进程和分布式计算来提高生成效率。

4. 典型生态项目

  • AnimateDiff:CameraCtrl 与 AnimateDiff 项目紧密结合,提供了更强大的视频生成能力。
  • Stable Diffusion:CameraCtrl 基于 Stable Diffusion 模型,进一步增强了视频生成的控制性。
  • RealEstate10K:该项目的数据集为 CameraCtrl 提供了丰富的相机轨迹和视频数据,是训练和测试的重要资源。

通过以上模块的介绍,您可以快速上手 CameraCtrl 项目,并了解其在实际应用中的潜力和最佳实践。

CameraCtrl CameraCtrl 项目地址: https://gitcode.com/gh_mirrors/ca/CameraCtrl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

方玉蜜United

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值