MM-Vet: 大型多模态模型综合能力评估教程
项目地址:https://gitcode.com/gh_mirrors/mm/MM-Vet
一、项目目录结构及介绍
MM-Vet项目是用于评估大型多模态模型在集成能力方面的开源工具包,发布于ICML 2024。以下是主要的目录结构及其简介:
-
根目录
LICENSE
,LICENSE_DATASET
: 包含软件许可协议和数据集许可协议。README.md
: 项目的主要读我文件,提供了概览、版本信息、论文链接和快速入门指南。mm-vet_evaluator.ipynb
,mm-vet_evaluator.py
: 分别是Jupyter Notebook和Python脚本形式的模型评价器,用于分析并评分模型输出结果。inferenence
: 存放着推断脚本,如用于GPT-4V和Gemini模型的推断。data
: 假设该目录用于存放MM-Vet的数据集,但实际下载地址需参照官方说明。results
: 用户存放模型预测结果的地方,如llava_llama2_13b_chat.json
示例。
-
其他核心文件
- 配置相关的文件可能散见于代码或特定模块中,但具体文件名未直接给出。通常,这类项目配置可能包括环境变量设置、模型参数等,隐藏于脚本内部或特定配置模块里。
二、项目的启动文件介绍
MM-Vet的核心操作不直接通过一个单一的“启动文件”进行,而是结合多个脚本和步骤来完成模型的评估。以下是关键操作流程,而非传统意义上的“启动”概念:
-
推断阶段: 使用提供的推断脚本(如
inference_gpt4v.py
)对你的模型进行推断,并将结果保存到JSON文件中。 -
评估阶段: 运行
mm-vet_evaluator.py
或打开mm-vet_evaluator.ipynb
。此步骤需要提供模型的预测结果文件路径以及MM-Vet的安装路径。
示例命令:
python inference/gpt4v.py --mmvet_path /path/to/mm-vet --image_detail high
python mm-vet_evaluator.py
三、项目的配置文件介绍
MM-Vet项目并未明确提及外部配置文件,其配置可能内置于各个脚本或依赖于环境变量和命令行参数。例如,在运行推断脚本时,通过命令行参数指定模型路径、输出细节级别等,这些都是临时性的“配置”。
对于更复杂的应用场景,配置可能涉及修改脚本中的默认值或创建自定义的设置部分,但这需要开发者直接查看和修改源码或利用环境变量来实现个性化设定。
总结,MM-Vet的灵活性体现在通过脚本参数而非独立配置文件来定制行为,这要求用户通过阅读脚本注释或直接编辑脚本来适应不同的评估需求。确保在使用前仔细阅读相关脚本中的指示和API说明。