SGDepth 开源项目教程

SGDepth 开源项目教程

SGDepth[ECCV 2020] Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance项目地址:https://gitcode.com/gh_mirrors/sg/SGDepth

1. 项目的目录结构及介绍

SGDepth 项目的目录结构如下:

SGDepth/
├── dataloader/
├── experiments/
├── imgs/
├── loaders/
├── losses/
├── models/
├── __init__.py
├── arguments.py
├── dc_masking.py
├── environment.yml
├── eval_depth.py
├── eval_depth.sh
├── eval_pose.py
├── eval_pose.sh
├── eval_segmentation.py
├── eval_segmentation.sh
├── harness.py
├── inference.py
├── perspective_resample.py
├── LICENSE
├── README.md
└── gitignore

目录介绍

  • dataloader/: 数据加载器相关文件。
  • experiments/: 实验配置和结果存储目录。
  • imgs/: 项目相关的图像文件。
  • loaders/: 数据加载和预处理相关文件。
  • losses/: 损失函数定义文件。
  • models/: 模型定义文件。
  • __init__.py: 初始化文件。
  • arguments.py: 命令行参数解析文件。
  • dc_masking.py: 动态类别掩码处理文件。
  • environment.yml: 环境配置文件。
  • eval_depth.py: 深度评估脚本。
  • eval_depth.sh: 深度评估 shell 脚本。
  • eval_pose.py: 姿态评估脚本。
  • eval_pose.sh: 姿态评估 shell 脚本。
  • eval_segmentation.py: 分割评估脚本。
  • eval_segmentation.sh: 分割评估 shell 脚本。
  • harness.py: 测试框架文件。
  • inference.py: 推理脚本。
  • perspective_resample.py: 透视重采样文件。
  • LICENSE: 项目许可证。
  • README.md: 项目说明文档。
  • gitignore: Git 忽略文件配置。

2. 项目的启动文件介绍

项目的启动文件主要是 inference.pyeval_depth.py

inference.py

该文件用于执行模型的推理操作,可以加载训练好的模型并对输入图像进行深度估计。

eval_depth.py

该文件用于评估模型的深度估计性能,可以计算深度估计的误差指标。

3. 项目的配置文件介绍

项目的配置文件主要是 environment.ymlarguments.py

environment.yml

该文件定义了项目运行所需的环境依赖,包括 Python 版本和所需的库。

arguments.py

该文件定义了命令行参数,包括模型路径、数据集路径、输出路径等。

通过这些配置文件,用户可以自定义项目的运行环境和参数设置。


以上是 SGDepth 开源项目的教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用该项目。

SGDepth[ECCV 2020] Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance项目地址:https://gitcode.com/gh_mirrors/sg/SGDepth

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韩蔓媛Rhett

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值