多Agent路径规划仿真系统:物流分拣场景的智能解决方案

多Agent路径规划仿真系统:物流分拣场景的智能解决方案

MultiAgentPathFinding 多AGV路径规划演示模型(CBS算法) MultiAgentPathFinding 项目地址: https://gitcode.com/gh_mirrors/mu/MultiAgentPathFinding

项目介绍

多Agent路径规划仿真系统是一款针对多AGV(自动导引车)物流分拣场景设计的仿真模拟系统。该系统由DarrenYing开发,作为其本科毕业设计,现已开源供广大开发者和技术爱好者使用。系统通过模拟多AGV在复杂环境中的路径规划,帮助用户优化物流分拣流程,提高效率。

项目技术分析

技术栈

  • 前端框架:系统采用p5.js作为主要开发工具,p5.js是一个基于JavaScript的创意编程库,特别适合用于图形和动画的开发。
  • 算法核心:系统集成了多种路径规划算法,包括但不限于A*算法、冲突基础搜索(CBS)算法等,确保在复杂环境中能够高效规划路径。
  • UI设计:系统UI界面友好,支持参数调整、单步执行模式、直接运行模式等多种操作方式,方便用户进行调试和优化。

版本迭代

  • V1.0:基本算法实现,逻辑无bug,支持基本的路径规划功能。
  • V1.1:UI界面初步完成,支持地图参数调整和直接运行模式。
  • V1.2:删除小车功能完成,修复了路径冲突导致的死循环问题。
  • V2.0:新增地图生成与导出、Agent增删与速度调整、批量自动化测试等功能,系统更加完善。

项目及技术应用场景

应用场景

  • 物流分拣中心:在物流分拣中心,多AGV需要高效、无冲突地完成货物分拣任务。该系统可以帮助优化AGV的路径规划,减少等待时间和冲突,提高分拣效率。
  • 仓储管理:在仓储管理中,AGV需要根据实时需求调整路径,确保货物能够快速、准确地到达指定位置。该系统可以模拟不同场景下的路径规划,帮助优化仓储管理流程。
  • 智能工厂:在智能工厂中,AGV是实现自动化生产的重要工具。该系统可以帮助工厂优化AGV的路径规划,提高生产效率和灵活性。

技术应用

  • 路径规划算法:系统集成了多种路径规划算法,用户可以根据实际需求选择合适的算法进行路径规划。
  • 仿真模拟:系统支持仿真模拟,用户可以在虚拟环境中测试不同的路径规划方案,优化实际应用中的路径规划策略。
  • 数据统计与分析:系统支持数据统计与分析,用户可以查看AGV的等待次数、转弯次数等数据,优化路径规划策略。

项目特点

功能丰富

  • 多模式支持:系统支持用户模式和测试模式,用户可以根据需求选择合适的模式进行操作。
  • 参数调整:系统支持地图参数、AGV参数等多种参数的调整,用户可以根据实际需求进行优化。
  • 数据统计:系统支持数据统计与分析,用户可以查看AGV的等待次数、转弯次数等数据,优化路径规划策略。

易于使用

  • 友好的UI界面:系统UI界面友好,操作简单,用户可以轻松上手。
  • 详细的文档:系统提供了详细的文档,用户可以快速了解系统的功能和使用方法。
  • 在线演示:系统提供了在线演示,用户可以在线体验系统的功能。

开源社区支持

  • 开源项目:系统是一个开源项目,用户可以自由下载、使用和修改。
  • 社区支持:系统有活跃的开源社区支持,用户可以在社区中获取帮助和交流经验。

结语

多Agent路径规划仿真系统是一个功能强大、易于使用的仿真模拟系统,适用于物流分拣、仓储管理、智能工厂等多个场景。无论你是开发者还是技术爱好者,都可以通过该系统优化路径规划策略,提高工作效率。快来体验吧!

在线尝试 | 系统文档 | GitHub项目地址

MultiAgentPathFinding 多AGV路径规划演示模型(CBS算法) MultiAgentPathFinding 项目地址: https://gitcode.com/gh_mirrors/mu/MultiAgentPathFinding

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农鸽望

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值