DiffSBDD:基于结构的药物设计equivariant扩散模型

DiffSBDD:基于结构的药物设计equivariant扩散模型

DiffSBDD A Euclidean diffusion model for structure-based drug design. DiffSBDD 项目地址: https://gitcode.com/gh_mirrors/di/DiffSBDD

项目介绍

DiffSBDD是一个基于equivariant扩散模型的药物设计项目,专注于结构基础的药物设计。该项目由Arne Schneuing、Yuanqi Du等多位专家联合开发,旨在通过先进的机器学习技术,推动药物设计领域的创新与发展。DiffSBDD已经在arXiv上发表了相关论文(链接),并且提供了在Google Colab上运行的版本(链接),方便用户快速上手。

项目技术分析

DiffSBDD采用了equivariant扩散模型,这是一种能够保持几何对称性的深度学习模型,特别适用于处理分子结构数据。项目依赖的主要技术栈包括:

  • PyTorch: 用于深度学习模型构建和训练。
  • PyTorch Lightning: 提供高效的训练流程管理。
  • WandB: 用于实验跟踪和可视化。
  • RDKit: 化学信息处理工具包。
  • BioPython: 生物信息学工具包。
  • OpenBabel: 化学格式转换工具。

项目支持多种预训练模型,用户可以从Zenodo下载(链接),涵盖了CrossDocked和Binding MOAD等多个数据集。

项目及技术应用场景

DiffSBDD适用于以下应用场景:

  1. 全新药物设计(De novo design): 通过指定蛋白质结构,生成新的配体分子。
  2. 子结构修复(Substructure inpainting): 在已有分子骨架的基础上,设计新的分子片段。
  3. 药物筛选与优化: 利用预训练模型,快速筛选和优化潜在的药物分子。

项目特点

1. 易于使用

项目提供了详细的安装指南和示例代码,用户可以通过简单的命令行操作,快速生成新的药物分子。例如,使用以下命令可以生成20个新的配体分子:

python generate_ligands.py checkpoints/crossdocked_fullatom_cond.ckpt --pdbfile example/3rfm.pdb --outfile example/3rfm_mol.sdf --ref_ligand A:330 --n_samples 20

2. 灵活的子结构修复

用户可以通过指定固定的子结构,进行分子设计。例如:

python inpaint.py checkpoints/crossdocked_fullatom_cond.ckpt --pdbfile example/5ndu.pdb --outfile example/5ndu_linked_mols.sdf --ref_ligand example/5ndu_C_8V2.sdf --fix_atoms example/fragments.sdf --center ligand --add_n_nodes 10

3. 强大的基准测试

项目在CrossDocked和Binding MOAD等多个数据集上进行了基准测试,确保模型的性能和可靠性。

4. 开源与可扩展

DiffSBDD是一个开源项目,用户可以根据自己的需求进行定制和扩展。项目提供了详细的训练和推理脚本,方便用户进行二次开发。

总结

DiffSBDD是一个功能强大、易于使用的药物设计工具,适用于全新药物设计和子结构修复等多种应用场景。通过先进的equivariant扩散模型,项目在药物设计领域展现了巨大的潜力。欢迎广大科研人员和开发者使用和贡献代码,共同推动药物设计的创新发展。

更多信息请访问项目GitHub页面:DiffSBDD

DiffSBDD A Euclidean diffusion model for structure-based drug design. DiffSBDD 项目地址: https://gitcode.com/gh_mirrors/di/DiffSBDD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农鸽望

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值