四频低光照图像增强(FourLLIE): 使用PyTorch的官方实现教程

四频低光照图像增强(FourLLIE): 使用PyTorch的官方实现教程

FourLLIE This is the official pytorch implementation of "FourLLIE: Boosting Low-Light Image Enhancement by Fourier Frequency Information" (ACM MM 2023) FourLLIE 项目地址: https://gitcode.com/gh_mirrors/fo/FourLLIE

1. 目录结构及介绍

四频低光照图像增强(FourLLIE)项目基于PyTorch框架,旨在通过傅里叶频率信息提升低光图像的增强效果。以下是项目的主要目录结构及各部分功能简介:

FourLLIE/
│
├── data/           # 数据集相关文件夹,存放或指向数据集路径
├── figs/           # 可能包含实验结果或模型架构图等图像文件
├── models/         # 模型定义文件,包含了FourLLIE的核心网络结构
├── options/        # 配置文件夹,包括训练和测试阶段的配置选项
│   ├── train/      # 训练配置文件
│   └── test/       # 测试配置文件
├── pre-trained/    # 预训练模型存放处,提供快速开始训练或评估
├── utils/          # 辅助工具函数集合,用于数据处理、模型保存与加载等
├── LICENSE         # 开源许可协议文件
├── README.md       # 主要的项目说明文档
├── requirements.txt # 项目依赖库列表,用于环境搭建
├── test.py         # 测试脚本,基于配置进行模型测试
├── train.py        # 训练脚本,用于训练模型
└── ...             # 其他可能的辅助文件或文档

2. 启动文件介绍

  • train.py: 这是项目的训练入口文件,它读取来自options/train/下的配置文件,初始化模型、优化器,并执行训练循环。用户可以在指定的配置文件中调整超参数如学习率、批次大小、以及模型特定的设置等。

  • test.py: 负责模型的验证或测试过程。同样地,该脚本使用options/test/中的配置来设定测试细节,比如模型的权重路径和测试数据集的位置。

3. 配置文件介绍

  • 训练配置 (options/train/LOLv2_real.yml): 此文件内含所有必需的训练设置,包括但不限于数据集路径、批处理大小、学习率、模型结构选择及其初始化方式、训练轮数等。用户可以在此修改以适配自己的需求或资源。

  • 测试配置 (options/test/LOLv2_real.yml): 包括模型加载路径、待测试的数据集详情以及其他必要的测试设置。用户在进行模型性能验证时需确保这些配置正确无误,以便模型能够正确读取数据并输出结果。

如何开始

环境准备: 首先,根据requirements.txt文件创建并激活Conda虚拟环境。

conda create --name FourLLIE --file requirements.txt
conda activate FourLLIE

训练模型: 修改options/train/目录下的配置文件至合适设置后运行:

python train.py -opt options/train/LOLv2_real.yml

测试模型: 修改相应的测试配置文件,然后执行测试命令:

python test.py -opt options/test/LOLv2_real.yml

记得将配置文件中的路径替换为实际数据或模型位置,以便顺利执行上述命令。此教程涵盖了基本的项目导航,深入学习和定制化应用还需参考项目文档和代码注释。

FourLLIE This is the official pytorch implementation of "FourLLIE: Boosting Low-Light Image Enhancement by Fourier Frequency Information" (ACM MM 2023) FourLLIE 项目地址: https://gitcode.com/gh_mirrors/fo/FourLLIE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔秋宗Mora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值