DeepH-pack 使用与安装指南

DeepH-pack 使用与安装指南

DeepH-packDeep neural networks for density functional theory Hamiltonian.项目地址:https://gitcode.com/gh_mirrors/de/DeepH-pack

1. 目录结构及介绍

DeepH-pack 是一个专为基于局部坐标和基变换预测密度泛函理论(DFT)哈密顿矩阵设计的深度神经网络应用包。以下是项目的主要目录结构概述:

  • ./ 根目录,包含了项目的主文件和重要说明。

    • README.md 项目简介、安装步骤和快速入门指导。
    • LICENSE 许可证文件,定义了软件使用的法律条款。
    • docs/ 文档目录,详细介绍了如何使用DeepH-pack的每一个步骤。
    • setup.py 安装脚本,用于设置和安装项目依赖。
    • gen_example.py 可能是一个示例脚本,用于生成或处理训练数据示例。
    • docs.ini, readthedocs.yaml 等,是构建项目文档时所需的配置文件。
  • tools/ 工具目录,可能包含辅助脚本或工具。

  • 其他潜在的子目录未在提供的信息中列出,但通常包括源代码、测试套件等部分。

2. 项目启动文件介绍

启动DeepH-pack并不直接通过单个“启动文件”进行,而是遵循一系列命令行操作。然而,从开发的角度看,主要的入口点可能是通过执行以下步骤来“启动”项目或使用其功能:

  1. 安装DeepH-pack: 用户需克隆仓库并运行安装命令:

    git clone https://github.com/mzjb/DeepH-pack.git
    cd DeepH-pack
    pip install .
    
  2. 准备数据集: 依据文档中的指示,使用如ABACUS, SIESTA等软件准备必要的输入数据。

  3. 运行模型: 详细的运行脚本或初始化模型的特定文件在上述步骤完成之后被调用,具体细节需查阅项目文档的“Usage”部分。

3. 项目的配置文件介绍

  • 配置文件位置与命名:具体的配置文件名(如是否命名为.ini)未直接提供,但在复杂的项目中,配置文件常以.ini, .yaml, 或其他格式存在。DeepH-pack可能在其内部或特定任务中使用配置文件,例如在docs.inireadthedocs.yaml这样的文档构建上下文中。
  • 配置内容:典型的配置文件可能包含模型训练参数、数据路径、软件接口设置等。用户需参照项目文档的“Input Keywords”章节来了解如何定制这些配置。

由于具体到每个配置文件的内容没有直接提供,实际操作时应当参考docs目录下的相关文档,尤其是关于如何配置和运行模型的部分,以便正确理解和设定这些配置文件。

DeepH-packDeep neural networks for density functional theory Hamiltonian.项目地址:https://gitcode.com/gh_mirrors/de/DeepH-pack

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秦言舸Gale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值