探索云端安全新境界:Azure 安全开发运维套件(Secure DevOps Kit for Azure)

探索云端安全新境界:Azure 安全开发运维套件(Secure DevOps Kit for Azure)

DevOpsKit项目地址:https://gitcode.com/gh_mirrors/de/DevOpsKit

随着云原生应用的日益普及,确保应用程序的安全性成为了开发者不可忽视的任务。今天,我们将深入探讨一款曾为无数开发者提供强大安全保障的开源神器——Azure 安全开发运维套件(AzSK),尽管AzSK已步入其生命周期的尾声,但它的影响力和价值依然值得我们关注,并且引导大家了解其继任者AzTS。

1. 项目介绍

Azure 安全开发运维套件,简称为AzSK,是专为Azure平台设计的一款工具集,致力于帮助团队在DevOps流程中集成安全性检查,实现从代码到云的安全无缝过渡。虽然AzSK现在进入了维护阶段,但它为云安全树立了标杆,其核心理念和功能仍然值得学习和借鉴。

2. 项目技术分析

AzSK的核心围绕Azure资源的安全治理展开,它利用PowerShell脚本和ARM模板,对Azure环境进行深度扫描,识别潜在的安全漏洞和不合规项。它支持自动化安全评估,涵盖Azure Security Center的最佳实践,通过可定制的控制清单,确保每个部署符合行业标准和组织特定的安全要求。AzSK的强大之处在于它能够融入现有的CI/CD管道,自动执行安全验证,实现快速反馈循环。

3. 项目及技术应用场景

AzSK广泛适用于任何依赖Azure进行部署的企业级项目。对于希望加强云服务安全性的开发团队、DevOps工程师以及安全专家来说,AzSK是一个宝藏工具。它特别适合以下场景:

  • 在持续集成/持续部署(CI/CD)流程中自动执行安全检查。
  • 确保新的Azure资源符合企业安全政策。
  • 对现有Azure环境进行全面的安全健康检查。
  • 实现云安全最佳实践的自动化监控。

4. 项目特点

  • 全面的安全检查:覆盖广泛的Azure服务,确保安全配置全面无遗漏。
  • 高度自动化:轻松集成到CI/CD流程,自动化安全审计,减少手动工作量。
  • 基于最佳实践:遵循Azure Security Center的标准和指导,保障最高级别的安全合规性。
  • 灵活性:通过自定义控制项,满足不同组织的具体安全需求。
  • 文档丰富:详尽的文档和社区支持,便于快速上手和解决问题。

虽然AzSK已经进入日落计划,但其为开发者留下的宝贵遗产不容忽视。它教育了我们如何在云时代重视并实践安全第一的理念。而对于寻求最新解决方案的朋友们,请转向AzTS,这是Microsoft推出的新工具,它继承了AzSK的精神,又带来了更多前沿特性和优化,继续守护您的云之旅。


请注意,虽然AzSK已不再更新,但是其在安全领域的贡献使得学习其原理和技术思路依然有价值,同时,了解AzTS的发展方向将帮助您紧跟云安全的最前线。

DevOpsKit项目地址:https://gitcode.com/gh_mirrors/de/DevOpsKit

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮奕清Primavera

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值