ArCHer项目安装与配置指南
1. 项目基础介绍
ArCHer是一个用于训练语言模型代理的研究项目,通过分层多轮强化学习(Hierarchical Multi-Turn RL)来实现。该项目旨在通过先进的机器学习技术,提升语言模型在多轮对话中的表现。项目主要使用的编程语言是Python。
2. 项目使用的关键技术和框架
- 强化学习(Reinforcement Learning):用于训练模型在给定环境中如何做出最优决策。
- 分层学习(Hierarchical Learning):将复杂任务分解成多个简单的子任务,每个子任务由不同的策略处理。
- 语言模型微调(Language Model Fine-tuning):在预训练的语言模型基础上进行微调,以适应特定的任务。
- Huggingface Transformers:用于加载预训练的语言模型,如GPT-2和RoBERTa。
- Weight and Biases:用于实验跟踪和结果可视化。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统中已安装以下依赖项:
- Python(建议版本3.10)
- Git
- Conda(或Miniconda)
详细安装步骤
-
克隆项目仓库
打开命令行界面,执行以下命令来克隆项目仓库:
git clone https://github.com/YifeiZhou02/ArCHer.git cd ArCHer
-
创建Python虚拟环境并安装依赖
使用conda创建一个新的虚拟环境并安装所需的Python包:
conda create -n archer python==3.10 conda activate archer python -m pip install -e .
如果需要安装spacy,执行以下命令:
python -m spacy download en_core_web_sm
-
下载数据集和检查点
根据项目README中的说明,下载所需的数据集和预训练的SFT检查点。
-
修改配置文件
根据你的需求修改
scripts/config/default.yaml
文件中的huggingface_token
和wandb_key
。 -
运行项目
根据项目配置,运行相应的脚本文件来开始训练或评估模型。例如,运行以下命令来开始一个20Q环境的实验:
cd scripts python run.py --config-name archer_20q
以上步骤为ArCHer项目的安装和配置提供了基本指南。根据具体需求,可能还需要进行其他配置或调整。请确保遵循项目README文件中的指示进行操作。