ArCHer项目安装与配置指南

ArCHer项目安装与配置指南

ArCHer Research Code for "ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL" ArCHer 项目地址: https://gitcode.com/gh_mirrors/archer6/ArCHer

1. 项目基础介绍

ArCHer是一个用于训练语言模型代理的研究项目,通过分层多轮强化学习(Hierarchical Multi-Turn RL)来实现。该项目旨在通过先进的机器学习技术,提升语言模型在多轮对话中的表现。项目主要使用的编程语言是Python。

2. 项目使用的关键技术和框架

  • 强化学习(Reinforcement Learning):用于训练模型在给定环境中如何做出最优决策。
  • 分层学习(Hierarchical Learning):将复杂任务分解成多个简单的子任务,每个子任务由不同的策略处理。
  • 语言模型微调(Language Model Fine-tuning):在预训练的语言模型基础上进行微调,以适应特定的任务。
  • Huggingface Transformers:用于加载预训练的语言模型,如GPT-2和RoBERTa。
  • Weight and Biases:用于实验跟踪和结果可视化。

3. 项目安装和配置的准备工作

在开始安装之前,请确保您的系统中已安装以下依赖项:

  • Python(建议版本3.10)
  • Git
  • Conda(或Miniconda)

详细安装步骤

  1. 克隆项目仓库

    打开命令行界面,执行以下命令来克隆项目仓库:

    git clone https://github.com/YifeiZhou02/ArCHer.git
    cd ArCHer
    
  2. 创建Python虚拟环境并安装依赖

    使用conda创建一个新的虚拟环境并安装所需的Python包:

    conda create -n archer python==3.10
    conda activate archer
    python -m pip install -e .
    

    如果需要安装spacy,执行以下命令:

    python -m spacy download en_core_web_sm
    
  3. 下载数据集和检查点

    根据项目README中的说明,下载所需的数据集和预训练的SFT检查点。

  4. 修改配置文件

    根据你的需求修改scripts/config/default.yaml文件中的huggingface_tokenwandb_key

  5. 运行项目

    根据项目配置,运行相应的脚本文件来开始训练或评估模型。例如,运行以下命令来开始一个20Q环境的实验:

    cd scripts
    python run.py --config-name archer_20q
    

以上步骤为ArCHer项目的安装和配置提供了基本指南。根据具体需求,可能还需要进行其他配置或调整。请确保遵循项目README文件中的指示进行操作。

ArCHer Research Code for "ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL" ArCHer 项目地址: https://gitcode.com/gh_mirrors/archer6/ArCHer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮奕清Primavera

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值