Dynamo_SSL 项目使用指南
1. 项目目录结构及介绍
Dynamo_SSL 项目是一个用于视觉预训练和模拟环境实验的代码库。以下是项目的目录结构及各部分的简要介绍:
dynamo_ssl/ # 项目根目录
├── configs/ # 配置文件目录
│ ├── datasets/ # 数据集配置
│ ├── env/ # 环境配置
│ ├── env_vars/ # 环境变量配置
│ ├── train_*.yaml # 训练配置文件
│ └── ssl/ # 视觉预训练配置
├── datasets/ # 数据集目录
├── envs/ # 环境相关文件
├── eval_configs/ # 评估配置文件目录
│ ├── encoder/ # 编码器配置
│ └── ...
├── models/ # 模型定义
├── utils/ # 工具函数
├── workspaces/ # 工作空间相关脚本
├── .gitignore # Git 忽略文件
├── LICENSE # 许可文件
├── README.md # 项目说明文件
├── conda_env.yml # Conda 环境配置文件
├── online_eval.py # 在线评估脚本
└── train.py # 训练脚本
2. 项目的启动文件介绍
项目的启动主要通过 train.py
和 online_eval.py
这两个脚本文件。
-
train.py
: 用于启动模型的训练过程。通过命令行参数--config-name
指定训练配置文件的名称,例如python3 train.py --config-name=train_sim_kitchen
。 -
online_eval.py
: 用于启动模型的在线评估过程。同样通过命令行参数--config-name
指定评估配置文件的名称。
3. 项目的配置文件介绍
项目的配置文件主要位于 configs
目录下,以下是一些主要的配置文件及其作用:
-
datasets/*.yaml
: 数据集配置文件,定义了数据集的加载方式和相关参数。 -
env/*.yaml
: 环境配置文件,包含了各种模拟环境的设置。 -
train_*.yaml
: 训练配置文件,用于指定训练过程中的各项参数,如优化器类型、学习率、训练周期等。 -
ssl/*.yaml
: 视觉预训练配置文件,用于定义视觉预训练的相关参数。 -
env_vars/*.yaml
: 环境变量配置文件,用于设置运行环境所需的各种变量,如数据集路径、结果保存路径等。
通过编辑这些配置文件,用户可以根据自己的需求调整项目运行时的各种参数。