Pylinac 项目教程
1. 项目介绍
Pylinac 是一个用于医学物理图像分析的 Python 库,主要用于放射治疗和诊断医学物理中的常规质量保证(QA)任务。该库遵循 AAPM TG-142 和其他相关指南,提供了高层次的模块来自动分析由直线加速器、CT 模拟器和其他放射肿瘤设备生成的图像和数据。Pylinac 不仅适用于 Python 程序员,也适用于非程序员,旨在简化图像分析过程,生成有意义的输出结果,如数值结果、分析图表或包含数值和图表数据的 PDF 报告。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 环境。然后使用 pip 安装 Pylinac:
pip install pylinac
基本使用
以下是一个简单的示例,展示如何加载 DICOM 图像并进行基本分析:
from pylinac import image
# 加载 DICOM 图像
my_dcm = image.load("path/to/my/image.dcm")
# 获取图像的 GantryAngle 标签
gantry_angle = my_dcm.metadata.GantryAngle
print(f"Gantry Angle: {gantry_angle}")
# 旋转图像
my_dcm.rotate(90)
# 显示图像
my_dcm.plot()
3. 应用案例和最佳实践
案例1:Winston-Lutz 分析
Winston-Lutz 测试用于评估直线加速器的机械精度。以下是如何使用 Pylinac 进行 Winston-Lutz 分析的示例:
from pylinac.winston_lutz import WinstonLutz
# 加载 Winston-Lutz 图像
wl = WinstonLutz("path/to/winston_lutz_images")
# 运行分析
wl.analyze()
# 生成报告
wl.publish_pdf("winston_lutz_report.pdf")
案例2:Picket Fence 分析
Picket Fence 测试用于评估多叶准直器(MLC)的精度。以下是如何使用 Pylinac 进行 Picket Fence 分析的示例:
from pylinac.picketfence import PicketFence
# 加载 Picket Fence 图像
pf = PicketFence("path/to/picket_fence_image.dcm")
# 运行分析
pf.analyze()
# 生成报告
pf.publish_pdf("picket_fence_report.pdf")
4. 典型生态项目
1. Matplotlib
Matplotlib 是一个用于创建静态、动画和交互式可视化的 Python 绘图库。Pylinac 使用 Matplotlib 来生成分析图表。
2. NumPy
NumPy 是 Python 中用于科学计算的基础包,提供了强大的多维数组对象和用于处理这些数组的工具。Pylinac 使用 NumPy 进行图像数据的处理和分析。
3. SciPy
SciPy 是一个开源的 Python 库,用于科学和工程计算。Pylinac 使用 SciPy 进行高级图像处理和分析任务。
4. PyDICOM
PyDICOM 是一个用于处理 DICOM 文件的 Python 库。Pylinac 使用 PyDICOM 来加载和处理 DICOM 图像。
通过结合这些生态项目,Pylinac 能够提供强大的图像分析功能,满足医学物理领域的多种需求。