基于人工神经网络的原子交互势能:ænet项目推荐
ænet 是一个开源项目,致力于利用人工神经网络(ANN)构建和应用的原子交互势能。该项目主要使用 Fortran 95/2003 编程语言,同时也包含部分 Python 代码。
1. 项目基础介绍
ænet 项目(Atomic Energy NETwork)提供了一套工具,用于基于人工神经网络构建原子交互势能模型。这种模型可以准确插值结构能量,例如从电子结构计算中获取的能量。通过 ænet 生成的 ANN 势能,可以用于大规模原子模拟,以及在需要大量采样的情况下,如分子动力学或蒙特卡洛模拟。
2. 核心功能
- 结构能量插值:ænet 允许使用人工神经网络准确插值结构能量,这些能量通常来自电子结构计算。
- 势能模型训练:项目提供了训练新神经网络势能的功能,这些势能模型可以用于更大规模的原子模拟。
- 势能应用:ænet 生成的势能模型可以应用于分子动力学或蒙特卡洛模拟中,进行能量和力的预测。
3. 最近更新功能
ænet 项目的最新更新可能包含以下功能:
- 编译和安装改进:改进了 Makefile 设置,使得编译和安装过程更加方便和兼容不同的编译器。
- Python 接口增强:提供了用于当前用户的 Python ænet 模块,并安装了用户脚本,如 aenet-predict.py 和 aenet-md.py,增强了项目的易用性。
- 文档和示例:增加了详细的安装说明、使用示例和文档,帮助用户更好地理解和应用 ænet。
ænet 项目的开源特性和强大的原子模拟功能,使其成为研究原子尺度现象的科研人员和开发者的有力工具。通过其提供的工具和模型,用户可以更高效地进行原子级别的模拟和分析。