vgpu_unlock 教程:解锁NVIDIA消费级GPU的vGPU功能
项目地址:https://gitcode.com/gh_mirrors/vg/vgpu_unlock
1. 项目介绍
vgpu_unlock
是一个开源项目,旨在解除对NVIDIA消费级显卡的vGPU功能限制。在Linux系统上,此工具利用内核补丁和用户空间工具,允许 Maxwell、Pascal、Volta(未测试)以及 Turing 架构的GPU使用vGPU技术。Ampere架构的支持正在发展中。
2. 项目快速启动
系统要求
确保你的系统满足以下条件:
- 支持虚拟化的CPU(如Intel VT-x 或 AMD-V)
- BIOS中的虚拟化选项已开启
dkms
已安装,便于重新编译NVIDIA GRID vGPU驱动- Python 3 和
pip3
安装最新版 frida
Python包已安装 (pip3 install frida
)- NVIDIA GRID vGPU驱动
安装步骤
-
克隆项目仓库:
git clone https://github.com/DualCoder/vgpu_unlock.git
-
安装依赖:
sudo apt-get update && sudo apt-get install -y build-essential python3-dev python3-pip dkms pip3 install frida
-
下载并安装NVIDIA GRID vGPU驱动:
# 替换下面的 URL 为实际的下载链接 wget https://us.download.nvidia.comGRIDGRID_Linux_x86_64_XXX.run chmod +x GRID_Linux_x86_64_XXX.run sudo ./GRID_Linux_x86_64_XXX.run --no-opengl-files --silent
-
应用内核补丁和解锁:
cd vgpu_unlock make sudo make install sudo modprobe -r nvidia sudo modprobe nvidia
-
启动vGPU支持:
# 使用适当的命令启动你的虚拟机 # 例如,如果你使用KVM,可能需要: kvm -m 8192 -vga none -device vfio-pci,host=01:00.0 -cpu host -machine q35 -boot order=dc
3. 应用案例和最佳实践
- 远程桌面解决方案:在数据中心环境中,解锁后的vGPU功能可以让用户通过远程桌面流畅地运行图形密集型应用,如CAD/CAM软件或游戏。
- 多用户共享GPU资源:通过vGPU技术,可以将单个GPU的处理能力分配给多个虚拟机,使得多个用户可以同时高效地使用同一张GPU。
- 节省成本:对于那些不希望投资于专业数据中心GPU但需要高性能图形处理能力的组织,解锁消费级GPU的vGPU功能是一个经济实惠的选择。
4. 典型生态项目
- KVM (Kernel-based Virtual Machine):作为Linux下的开源虚拟化平台,可以利用vgpu_unlock配合vGPU技术实现高效的GPU虚拟化。
- Proxmox VE:集成了KVM和LXC的开源虚拟化管理套件,可利用vgpu_unlock在Proxmox环境下配置GPU虚拟化。
- OpenStack:云操作系统平台,可通过vgpu_unlock增强其虚拟机的图形处理能力。
请注意,在不受支持的硬件上使用vGPU可能存在风险,建议始终关注NVIDIA官方的更新和支持。务必遵循官方文档和社区维护的信息,以确保最佳实践和安全性。