Adan-pytorch 开源项目使用教程

Adan-pytorch 开源项目使用教程

Adan-pytorchImplementation of the Adan (ADAptive Nesterov momentum algorithm) Optimizer in Pytorch项目地址:https://gitcode.com/gh_mirrors/ad/Adan-pytorch

1. 项目目录结构及介绍

此开源项目 Adan-pytorch 实现在PyTorch框架下的ADAptive Nesterov momentum算法(Adan)优化器。下面是该GitHub仓库的基本目录结构及其简介:

adan-pytorch/
├── adan_pytorch          # 核心代码模块,包含了Adan优化器的实现
│   └── __init__.py
├── gitignore             # Git忽略文件列表
├── LICENSE               # 许可证文件,遵循MIT协议
├── README.md             # 项目的主要说明文档,包括安装指引和基本使用示例
├── adan-pseudocode.png   # Adan算法的伪代码图解,帮助理解算法流程
├── setup.py              # 项目设置文件,用于打包发布到PyPI
└── ...                   # 可能还包含其他如测试、文档或示例代码等未列出的文件夹或文件
  • adan_pytorch: 包含了Adan优化器的类定义,是实际应用中需要导入的部分。
  • LICENSE: 描述项目使用的MIT许可证条款。
  • README.md: 提供项目概述、快速安装指南和简单使用案例。
  • adan-pseudocode.png: 图形化表示Adan算法逻辑,对理解和学习算法很有帮助。

2. 项目的启动文件介绍

在本项目中,没有明确的“启动文件”概念,因为这是一个Python库而非独立应用程序。使用时,主要通过在你的PyTorch项目中导入adan_pytorch包中的Adan优化器来“启动”其功能。以下是如何集成到你的训练脚本的简要示例:

from adan_pytorch import Adan

model = YourModel()  # 假设YourModel是你自定义的模型
optimizer = Adan(model.parameters(), lr=0.001)

3. 项目的配置文件介绍

项目本身没有提供传统意义上的配置文件(如.cfg, .json等形式)。对于使用Adan优化器的配置,主要是通过传递关键字参数给Adan构造函数进行个性化设置。这些配置参数直接在代码中指定,比如学习率(lr)、动量项相关的超参数等。例如:

optimizer = Adan(
    model.parameters(),
    lr=0.001,
    betas=(0.98, 0.92),  # 类似于Adam中的β1和β2,但适用于Adan
    eps=1e-8,            # 小数值以防止除零错误
    weight_decay=0.0     # L2正则化权重
)

这里的配置是在实例化Adan优化器时完成的,无需外部配置文件。开发者应根据实际需求调整这些参数以优化模型训练过程。

Adan-pytorchImplementation of the Adan (ADAptive Nesterov momentum algorithm) Optimizer in Pytorch项目地址:https://gitcode.com/gh_mirrors/ad/Adan-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

束恺俭Jessie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值