DiffusionDet 项目使用教程
1. 项目目录结构及介绍
DiffusionDet/
├── configs/
│ ├── diffusiondet/
│ │ ├── config1.yaml
│ │ ├── config2.yaml
│ │ └── ...
├── demo.py
├── GETTING_STARTED.md
├── LICENSE
├── README.md
├── teaser.png
├── train_net.py
└── ...
目录结构说明
- configs/: 包含项目的配置文件,特别是
diffusiondet/
目录下存放了与 DiffusionDet 相关的配置文件。 - demo.py: 项目的演示文件,用于展示 DiffusionDet 的基本功能。
- GETTING_STARTED.md: 项目入门指南,包含安装和使用说明。
- LICENSE: 项目的许可证文件,说明项目的使用条款。
- README.md: 项目的主文档,包含项目的概述、安装、使用等信息。
- teaser.png: 项目的示例图片。
- train_net.py: 项目的训练脚本,用于训练 DiffusionDet 模型。
2. 项目启动文件介绍
demo.py
demo.py
是 DiffusionDet 项目的演示文件,用于展示如何使用 DiffusionDet 进行目标检测。该文件通常包含以下功能:
- 加载预训练模型
- 处理输入图像
- 执行目标检测
- 显示检测结果
train_net.py
train_net.py
是 DiffusionDet 项目的训练脚本,用于训练 DiffusionDet 模型。该文件通常包含以下功能:
- 加载数据集
- 配置训练参数
- 执行模型训练
- 保存训练结果
3. 项目的配置文件介绍
configs/diffusiondet/
目录
configs/diffusiondet/
目录下存放了与 DiffusionDet 相关的配置文件,这些配置文件用于定义模型的超参数、数据集路径、训练参数等。以下是一些常见的配置文件:
- config1.yaml: 定义了第一个配置方案,包含模型的基本参数和训练设置。
- config2.yaml: 定义了第二个配置方案,可能包含不同的数据集路径或训练参数。
配置文件示例
# config1.yaml
model:
name: "DiffusionDet"
backbone: "resnet50"
num_classes: 80
dataset:
name: "COCO"
path: "/path/to/coco"
train:
batch_size: 16
learning_rate: 0.001
epochs: 100
以上配置文件定义了模型的名称、使用的骨干网络、类别数量,以及数据集的名称和路径,还包括训练时的批量大小、学习率和训练轮数。
通过这些配置文件,用户可以灵活地调整 DiffusionDet 的训练和运行参数,以适应不同的应用场景。