古汉语BERT预训练模型:bert-ancient-chinese项目指南
bert-ancient-chinese 项目地址: https://gitcode.com/gh_mirrors/be/bert-ancient-chinese
1. 目录结构及介绍
bert-ancient-chinese/
├── README.md # 项目介绍和快速入门指南
├── src # 核心源代码目录
│ ├── model.py # 模型定义文件,包含了BERT模型的古文适应性修改
│ ├── trainer.py # 训练脚本,用于模型的继续训练和微调
│ └── utils.py # 辅助函数集合,如数据加载、预处理等
├── data # 数据集存放目录
│ ├── pretrain.txt # 预训练用的大规模古文语料
│ └── downstream # 下游任务的数据,例如CWS和POS数据集
├── requirements.txt # 项目依赖列表
├── notebooks # 示例Notebooks,演示如何使用模型
├── evaluations # 测试和评估脚本以及报告
└── scripts # 启动和管理脚本,如数据预处理脚本
说明: 项目根目录下README.md
是了解项目概览的关键文档,它提供了安装指引、快速启动命令和基本用法。src
目录存放核心模型代码与训练逻辑,而data
目录则包括所需的训练和评估数据。
2. 项目的启动文件介绍
项目的主要启动点位于scripts
目录下,虽然具体文件名未详细给出,但通常有以下几种常见启动方式:
-
训练模型:假设有一个
train.py
脚本,它接收必要的参数(如数据路径、模型输出路径等),并调用src
中的训练逻辑来开始预训练或微调过程。python scripts/train.py --data_path=data/pretrain.txt --model_output=model_output
-
运行示例:可能在
notebooks
内有.ipynb
笔记本文件,用于展示如何加载模型执行预测或分析。 -
评估模型:如果提供评估脚本,比如
evaluate.py
,它可以加载预先训练好的模型,并应用于特定的下游任务,如自动分词和词性标注。
3. 项目的配置文件介绍
虽然具体的配置文件位置和命名没有直接提供,但在实际项目中,配置文件常常被命名为config.json
或类似,位于重要脚本或根目录附近。配置文件一般包含:
- 模型参数:如隐藏层大小、注意力头数、层数等BERT模型的架构配置。
- 训练设置:批次大小、学习率、 epochs、优化器类型等训练细节。
- 数据路径:指向预训练语料库和下游任务数据的具体路径。
- 环境配置:可能包括使用的GPU设置或是否使用混合精度训练等。
使用配置文件可以让用户灵活调整项目运行的参数,而不必每次修改代码。在使用前,务必参照项目README.md
中关于配置文件的说明进行适当的定制。
注意事项:上述路径和文件名仅为示例,具体项目结构和启动方式应参考实际项目仓库内的README.md
文件和其他相关文档。确保在操作前阅读最新的文档指导。
bert-ancient-chinese 项目地址: https://gitcode.com/gh_mirrors/be/bert-ancient-chinese