aimo-progress-prize:项目核心功能/场景
aimo-progress-prize 项目地址: https://gitcode.com/gh_mirrors/ai/aimo-progress-prize
项目介绍
aimo-progress-prize 是一个针对 AI 数学奥林匹克竞赛(AIMO)进步奖的解决方案。该项目的核心在于提供一个能够解决数学问题的深度学习模型,并包含相关训练和推理代码,以复现项目团队在竞赛中获胜的成果。项目基于 DeepSeekMath-Base 7B 模型,通过两种不同类型的训练数据集对模型进行微调,进而实现数学问题的求解。
项目技术分析
aimo-progress-prize 采用了多种先进的技术和方法,主要包括:
- 工具集成推理(TIR):通过将数学问题与代码解决方案相结合,使模型能够执行代码并生成结果,进而完成解题过程。
- 自一致性解码算法:生成解决方案的候选者,并根据代码执行的反馈进行调整,确保最终解答的准确性。
- 深度学习模型微调:使用大规模数学问题数据集对预训练模型进行微调,提高其在数学问题上的表现。
项目使用了 TRL、PyTorch、vLLM 和 DeepSpeed 等开源库进行模型的训练。
项目及应用场景
aimo-progress-prize 可应用于多种数学问题求解的场景,包括但不限于:
- 教育领域:辅助学生解决高中及奥林匹克级别的数学题目。
- 在线学习平台:为用户提供智能化的数学问题解答服务。
- 研究机构:作为研究数学问题自动求解的工具。
项目的核心功能是帮助模型在数学奥林匹克竞赛中取得进步奖,但它的应用范围远远超出了竞赛本身。
项目特点
aimo-progress-prize 的主要特点如下:
- 高质量数据集:项目使用了两个大规模数据集,分别为 NuminaMath-CoT 和 NuminaMath-TIR,包含了约 100 万个数学问题及其解决方案。
- 创新训练方法:项目采用了两阶段的训练方法,首先通过链式思维(CoT)训练,然后通过工具集成推理(TIR)训练,使模型能够更好地解决数学问题。
- 性能优化:通过模型量化等技术,优化了模型在硬件资源受限的环境下的性能。
- 易于部署:项目提供了详细的安装指南和项目结构,便于用户快速部署和使用。
以下是对 aimo-progress-prize 的详细解读:
数据集
- NuminaMath-CoT:包含约 86 万个数学问题,每个问题的解决方案都采用链式思维(CoT)格式。
- NuminaMath-TIR:从 NuminaMath-CoT 数据集中筛选约 7 万个问题,使用 GPT-4 生成 TORA 类型的推理路径,并执行代码生成结果。
训练流程
项目训练分为两个阶段:
- 第一阶段:使用 NuminaMath-CoT 数据集对 DeepSeekMath-Base 7B 模型进行微调,得到 NuminaMath-7B-CoT 模型。
- 第二阶段:将第一阶段得到的模型进一步在 NuminaMath-TIR 数据集上训练,以学习工具集成推理,得到 NuminaMath-7B-TIR 模型。
性能优化
项目采用了 8 位量化技术,通过 AutoGPTQ 对模型进行量化,以适应 Kaggle 平台上 T4 GPU 的性能需求。
硬件和软件环境
项目在以下环境上进行了训练和测试:
- 操作系统:Ubuntu 20.04.6 LTS
- GPU:8 x H100 GPUs,每个 GPU 配备 80GB VRAM
- 软件:Python 3.10.14、CUDA 12.2、Nvidia 驱动程序 v.535.104.12
通过上述分析,我们可以看到 aimo-progress-prize 是一个功能强大、应用广泛的开源项目,它不仅为数学奥林匹克竞赛提供了高质量的解决方案,还为数学问题自动求解领域的研究和应用提供了宝贵的技术资源。
aimo-progress-prize 项目地址: https://gitcode.com/gh_mirrors/ai/aimo-progress-prize