IRS 项目使用教程

IRS 项目使用教程

IRS IRS 项目地址: https://gitcode.com/gh_mirrors/irs/IRS

1. 项目介绍

IRS(Indoor Robotics Stereo)是一个用于室内机器人视觉任务的大型合成数据集,特别适用于深度和表面法线估计。该数据集包含103,316个样本,覆盖了多种室内场景,如家庭、办公室、商店和餐厅。IRS数据集的目标是帮助研究人员和开发者训练深度学习模型,以提高室内机器人视觉系统的性能。

2. 项目快速启动

2.1 环境准备

首先,确保你的系统满足以下依赖要求:

  • Python 3.7
  • PyTorch 1.6.0+
  • torchvision 0.5.0+
  • CUDA 10.1

推荐使用 conda 进行环境配置:

conda env create -f environment.yml

2.2 安装依赖

安装必要的依赖包:

cd layers_package
./install.sh

2.3 下载数据集

从以下链接下载IRS数据集:

https://1drv.ms/f/s!AmN7U9URpGVGem0coY8PJMHYg0g?e=nvH5oB

下载后解压数据集并放置在正确的目录中:

data
└── IRSDataset
    ├── Home
    ├── Office
    ├── Restaurant
    └── Store

2.4 训练模型

使用以下命令启动训练:

./train.sh

训练配置文件位于 exp_configs 目录下,你可以根据需要创建自己的配置文件。例如,以下配置文件用于在IRS数据集上训练DispNormNet:

/exp_configs/dtonnet.conf
net=dispnormnet
loss=loss_configs/dispnetcres_irs.json
outf_model=models/$[net]-irs
logf=logs/$[net]-irs.log
lr=1e-4
devices=0,1,2,3
dataset=irs
trainlist=lists/IRSDataset_TRAIN.list
vallist=lists/IRSDataset_TEST.list
startR=0
startE=0
endE=10
batchSize=16
maxdisp=-1
model=none

2.5 模型评估

使用以下命令进行模型评估:

./detect.sh
dataset=irs
net=dispnormnet
model=models/dispnormnet-irs/model_best.pth
outf=detect_results/$[net]-$[dataset]/
filelist=lists/IRSDataset_TEST.list
filepath=data
CUDA_VISIBLE_DEVICES=0 python detecter.py --model $model --rp $outf --filelist $filelist --filepath $filepath --devices 0 --net $[net] --disp-on --norm-on

3. 应用案例和最佳实践

3.1 室内机器人导航

IRS数据集可以用于训练深度学习模型,以提高室内机器人的导航能力。通过使用IRS数据集,机器人可以更好地理解室内环境,从而实现更精确的路径规划和避障。

3.2 物体识别与定位

利用IRS数据集,可以训练模型来识别和定位室内环境中的物体。这对于家庭服务机器人、仓库管理机器人等应用场景非常有用。

3.3 深度估计与表面法线估计

IRS数据集特别适用于深度估计和表面法线估计任务。通过训练深度学习模型,可以提高机器人对室内环境的感知能力,从而实现更复杂的任务。

4. 典型生态项目

4.1 PyTorch

PyTorch 是一个广泛使用的深度学习框架,支持动态计算图,非常适合用于IRS数据集的模型训练。

4.2 CUDA

CUDA 是 NVIDIA 提供的并行计算平台和编程模型,能够显著加速深度学习模型的训练和推理过程。

4.3 OpenEXR

OpenEXR 是一个用于高动态范围图像的文件格式,IRS数据集中的表面法线图通常以EXR格式存储。

通过以上步骤,你可以快速上手使用IRS数据集,并利用其进行室内机器人视觉任务的深度学习模型训练。

IRS IRS 项目地址: https://gitcode.com/gh_mirrors/irs/IRS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何柳新Dalton

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值