IRS 项目使用教程
IRS 项目地址: https://gitcode.com/gh_mirrors/irs/IRS
1. 项目介绍
IRS(Indoor Robotics Stereo)是一个用于室内机器人视觉任务的大型合成数据集,特别适用于深度和表面法线估计。该数据集包含103,316个样本,覆盖了多种室内场景,如家庭、办公室、商店和餐厅。IRS数据集的目标是帮助研究人员和开发者训练深度学习模型,以提高室内机器人视觉系统的性能。
2. 项目快速启动
2.1 环境准备
首先,确保你的系统满足以下依赖要求:
- Python 3.7
- PyTorch 1.6.0+
- torchvision 0.5.0+
- CUDA 10.1
推荐使用 conda
进行环境配置:
conda env create -f environment.yml
2.2 安装依赖
安装必要的依赖包:
cd layers_package
./install.sh
2.3 下载数据集
从以下链接下载IRS数据集:
https://1drv.ms/f/s!AmN7U9URpGVGem0coY8PJMHYg0g?e=nvH5oB
下载后解压数据集并放置在正确的目录中:
data
└── IRSDataset
├── Home
├── Office
├── Restaurant
└── Store
2.4 训练模型
使用以下命令启动训练:
./train.sh
训练配置文件位于 exp_configs
目录下,你可以根据需要创建自己的配置文件。例如,以下配置文件用于在IRS数据集上训练DispNormNet:
/exp_configs/dtonnet.conf
net=dispnormnet
loss=loss_configs/dispnetcres_irs.json
outf_model=models/$[net]-irs
logf=logs/$[net]-irs.log
lr=1e-4
devices=0,1,2,3
dataset=irs
trainlist=lists/IRSDataset_TRAIN.list
vallist=lists/IRSDataset_TEST.list
startR=0
startE=0
endE=10
batchSize=16
maxdisp=-1
model=none
2.5 模型评估
使用以下命令进行模型评估:
./detect.sh
dataset=irs
net=dispnormnet
model=models/dispnormnet-irs/model_best.pth
outf=detect_results/$[net]-$[dataset]/
filelist=lists/IRSDataset_TEST.list
filepath=data
CUDA_VISIBLE_DEVICES=0 python detecter.py --model $model --rp $outf --filelist $filelist --filepath $filepath --devices 0 --net $[net] --disp-on --norm-on
3. 应用案例和最佳实践
3.1 室内机器人导航
IRS数据集可以用于训练深度学习模型,以提高室内机器人的导航能力。通过使用IRS数据集,机器人可以更好地理解室内环境,从而实现更精确的路径规划和避障。
3.2 物体识别与定位
利用IRS数据集,可以训练模型来识别和定位室内环境中的物体。这对于家庭服务机器人、仓库管理机器人等应用场景非常有用。
3.3 深度估计与表面法线估计
IRS数据集特别适用于深度估计和表面法线估计任务。通过训练深度学习模型,可以提高机器人对室内环境的感知能力,从而实现更复杂的任务。
4. 典型生态项目
4.1 PyTorch
PyTorch 是一个广泛使用的深度学习框架,支持动态计算图,非常适合用于IRS数据集的模型训练。
4.2 CUDA
CUDA 是 NVIDIA 提供的并行计算平台和编程模型,能够显著加速深度学习模型的训练和推理过程。
4.3 OpenEXR
OpenEXR 是一个用于高动态范围图像的文件格式,IRS数据集中的表面法线图通常以EXR格式存储。
通过以上步骤,你可以快速上手使用IRS数据集,并利用其进行室内机器人视觉任务的深度学习模型训练。