SciTSR 表结构识别数据集指南

SciTSR 表结构识别数据集指南

SciTSR项目地址:https://gitcode.com/gh_mirrors/sc/SciTSR

一、项目介绍

SciTSR (Scientific Table Structure Recognition) 是一个大规模的表结构识别数据集,包含了来自LaTeX源文件的15,000个PDF格式表格及其对应的结构标签。此数据集旨在推进复杂表格识别领域的研究,特别是在学术文献中常见的表格结构分析。

  • 下载链接: SciTSR 数据集
  • 数据规模: 总共包括15,000个示例,其中12,000用于训练,3,000用于测试。此外,还提供了一个仅含复杂表格的测试集,称为“SciTSR-COMP”。

二、项目快速启动

要开始使用SciTSR进行实验,首先通过以下步骤克隆仓库并安装必要的依赖:

克隆SciTSR仓库

git clone https://github.com/Academic-Hammer/SciTSR.git
cd SciTSR

安装依赖

确保您已安装Python以及必要的库,如numpy、pandas等。具体依赖可查看requirements.txt并在您的环境中安装:

pip install -r requirements.txt

查看数据集

浏览目录以了解数据组织方式:

tree .

该命令将显示数据集中pdf, structure, imgchunk 等子目录的内容,分别存储PDF文件、结构标签、图像转换后的输入以及由Tabby处理的提取块。

三、应用案例和最佳实践

SciTSR不仅提供了大量的数据支持,还附带了GraphTSR模型的预构建关系标签,这对于开发复杂的表格解析器非常有用。下面是如何在实践中使用这些资源的一些建议:

  • 利用提供的标签: 训练你的模型时,可以考虑使用structure目录中的标签来增强算法的学习能力。
  • 图像输入预处理: 使用由pdfcairo转换成图像格式的数据(位于img目录),这有助于加快处理速度并减少内存占用。
  • 模型性能评估: 在test目录下使用预留的3,000个测试样本对模型进行验证,特别是那些复杂表格。

示例代码片段

加载和可视化第一个训练表格的结构标签:

import os
from PIL import Image
import json

# Load JSON structure label
with open(os.path.join('train', 'structure', 'table_0.json')) as f:
    structure = json.load(f)

# Display the first table's image
Image.open(os.path.join('train', 'img', 'table_0.jpg')).show()

四、典型生态项目

SciTSR是专为科学研究设计的数据集,通常与机器学习、自然语言处理和计算机视觉的多个相关项目集成。例如,GraphTSR模型就是基于此数据集开发的一个实例,它通过构建图表节点表示来改进表格理解的准确性。研究人员可以以此为基础,探索更多复杂结构识别的解决方案或优化现有技术。


以上指南概述了如何使用SciTSR数据集,从初始化到实施阶段的关键步骤。无论是对于新手还是经验丰富的开发者来说,SciTSR都是一个宝贵的资源,能够推动学术界和工业界的表格理解和自动化工具的进步。

SciTSR项目地址:https://gitcode.com/gh_mirrors/sc/SciTSR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

严千旗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值