FedLab:基于PyTorch的联邦学习框架

FedLab:基于PyTorch的联邦学习框架

FedLab A flexible Federated Learning Framework based on PyTorch, simplifying your Federated Learning research. FedLab 项目地址: https://gitcode.com/gh_mirrors/fe/FedLab

联邦学习是一种新兴的机器学习研究领域,旨在保护分布式机器学习过程中的个人数据隐私。FedLab 是一个基于 PyTorch 的灵活联邦学习框架,旨在简化联邦学习研究的实现过程。

1. 项目基础介绍和主要编程语言

FedLab 是由 SMILELab 开发的一个开源项目,主要使用 Python 编程语言,基于 PyTorch 深度学习框架。它提供了联邦学习所需的基本模块,包括通信、压缩、模型优化、数据划分等功能,帮助用户快速搭建联邦学习仿真环境。

2. 项目的核心功能

  • 模块化设计:FedLab 提供了必要的模块,用户可以像拼乐高积木一样自定义模块,构建适合自己需求的联邦学习仿真环境。
  • 联邦学习算法实现:框架中实现了多种联邦学习基准算法,如 FedAvg、FedProx、FedDyn 等,方便用户进行算法复现和对比。
  • 数据划分:支持多种数据划分方案,包括平衡和非平衡独立同分布(IID)划分、异构狄利克雷划分、碎片划分等,满足不同研究场景的需求。
  • 易于扩展:框架设计灵活,用户可以轻松扩展新的算法或数据划分策略。

3. 项目最近更新的功能

最近更新的功能包括:

  • 增强的数据划分工具:提供了更灵活的数据划分器 DataPartitioner,允许用户使用预划分的数据集以及自己的数据。
  • 新的联邦学习算法:添加了新的联邦学习算法实现,如 Fair Resource Allocation in Federated Learning (q-FFL)、Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization (FedNova) 等。
  • 性能优化:对框架的通信和模型优化部分进行了性能优化,提高了整体运行效率。

通过这些更新,FedLab 进一步提升了联邦学习研究的便捷性和效率,为开源社区的研究者们提供了一个强大的工具。

FedLab A flexible Federated Learning Framework based on PyTorch, simplifying your Federated Learning research. FedLab 项目地址: https://gitcode.com/gh_mirrors/fe/FedLab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晏灵昀Odette

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值