Splatt3R: 从未校准图像对中进行零样本高斯散布的开源项目

Splatt3R: 从未校准图像对中进行零样本高斯散布的开源项目

splatt3r Official repository for Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs splatt3r 项目地址: https://gitcode.com/gh_mirrors/sp/splatt3r

1. 项目介绍

Splatt3R 是一个基于深度学习的开源项目,它能够直接从未校准的图像对中预测出3D高斯分布。这个项目是论文 "Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs" 的官方实现,由Active Vision Lab和Visual Geometry Group的研究者们共同开发。它采用了一种前馈模型,无需任何额外的校准步骤,即可从普通图像中恢复出场景的三维结构。

2. 项目快速启动

克隆项目

首先,需要从GitHub上克隆Splatt3R项目:

git clone https://github.com/btsmart/splatt3r.git
cd splatt3r

设置Anaconda环境

接着,使用以下命令创建一个Anaconda环境:

conda env create -f environment.yml

安装必要的Python包:

pip install git+https://github.com/dcharatan/diff-gaussian-rasterization-modified

编译CUDA内核(可选)

如果你想编译用于RoPE的CUDA内核,可以执行以下步骤:

cd src/mast3r_src/dust3r/croco/models/curope/
python setup.py build_ext --inplace
cd ../../../../../../

运行演示

使用以下命令运行Gradio演示:

python demo.py

演示将加载训练好的模型并生成一个 .ply 文件,这个文件代表了一个场景。你可以下载并使用在线的3D高斯散布查看器来渲染这个文件。

3. 应用案例和最佳实践

Splatt3R可以用于多种场景的三维重建任务,以下是一些典型的应用案例:

  • 室内场景建模:对于 ScanNet++ 数据集中的室内场景,Splatt3R可以快速生成三维模型。
  • 实时三维重建:Splatt3R的快速推理速度使其适用于实时三维重建系统。
  • 视觉SLAM:结合相机位姿估计,Splatt3R可以用于增强视觉SLAM系统的三维重建能力。

4. 典型生态项目

Splatt3R的生态系统中包括了以下项目:

  • MASt3R:用于三维重建的深度学习框架,Splatt3R使用其预训练模型。
  • ScanNet++:一个用于训练和测试Splatt3R的大规模室内场景数据集。
  • SplaTAM:用于处理ScanNet++数据的工具包,为Splatt3R提供了数据预处理功能。

以上就是Splatt3R项目的简要介绍、快速启动指南以及一些应用案例和生态项目介绍。希望这些信息能够帮助您更好地了解和使用Splatt3R项目。

splatt3r Official repository for Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs splatt3r 项目地址: https://gitcode.com/gh_mirrors/sp/splatt3r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马品向

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值