Tinynn 开源项目教程
1. 项目的目录结构及介绍
Tinynn 项目的目录结构如下:
tinynn/
├── examples/
│ ├── mnist/
│ │ ├── mnist_cnn.py
│ │ └── mnist_fc.py
│ └── README.md
├── tinynn/
│ ├── __init__.py
│ ├── graph.py
│ ├── layer.py
│ ├── loss.py
│ ├── model.py
│ ├── optimizer.py
│ ├── tensor.py
│ └── util.py
├── tests/
│ ├── test_graph.py
│ ├── test_layer.py
│ ├── test_loss.py
│ ├── test_model.py
│ ├── test_optimizer.py
│ └── test_tensor.py
├── .gitignore
├── LICENSE
├── README.md
└── setup.py
目录结构介绍
examples/
:包含一些示例代码,如 MNIST 数据集的卷积神经网络 (mnist_cnn.py
) 和全连接网络 (mnist_fc.py
)。tinynn/
:核心代码目录,包含图 (graph.py
)、层 (layer.py
)、损失函数 (loss.py
)、模型 (model.py
)、优化器 (optimizer.py
)、张量 (tensor.py
) 和工具函数 (util.py
)。tests/
:包含测试代码,用于测试各个模块的功能。.gitignore
:Git 忽略文件配置。LICENSE
:项目许可证。README.md
:项目说明文档。setup.py
:项目安装脚本。
2. 项目的启动文件介绍
Tinynn 项目没有明确的启动文件,但可以通过运行 examples/
目录下的示例代码来启动项目。例如,运行 MNIST 数据集的卷积神经网络示例:
python examples/mnist/mnist_cnn.py
3. 项目的配置文件介绍
Tinynn 项目没有专门的配置文件,但可以通过修改示例代码中的参数来配置模型。例如,在 examples/mnist/mnist_cnn.py
中,可以修改学习率、批次大小等参数:
# 示例代码中的配置参数
learning_rate = 0.01
batch_size = 64
epochs = 10
通过修改这些参数,可以调整模型的训练行为。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考