探索未来隐私计算的边界:ZKP Neural Networks项目解析与推荐

探索未来隐私计算的边界:ZKP Neural Networks项目解析与推荐

proto-neural-zkpArtificial intelligence and zero knowledge.项目地址:https://gitcode.com/gh_mirrors/pr/proto-neural-zkp

随着机器学习与区块链技术的融合,隐私保护成为了创新的核心议题。今天,我们将目光聚焦于一个令人振奋的开源项目——ZKP Neural Networks,它在零知识证明(Zero-Knowledge Proofs, ZKP)的广阔天地中开辟了一条新路径,利用强大的Plonky2证明系统,让神经网络模型能够在保持数据私密性的同时进行验证。

项目介绍

ZKP Neural Networks是一个开创性的原型项目,致力于在零知识证明框架内评估神经网络模型,特别采用了Plonky2这一由Polygon Zero团队开发的高效证明系统。通过这样的技术栈,项目旨在解决零知识机器学习(ZKML)领域中的核心挑战,为隐私保护和认证机制提供了革命性的解决方案。

技术深度剖析

技术选型上,该项目集成了多语言的优势,采用灵活高效的PythonNumpy用于构建基础的卷积神经网络(CNN),同时依赖于内存安全且性能优异的Rust语言来实现关键的零知识电路部分。此外,借助于Plonky2的复杂逻辑支持,实现了神经网络推断步骤的隐私计算,确保了模型验证过程中的信息保密。最后,Serde库的引入使得Rust和Python之间模型数据的序列化与反序列化成为可能,为跨语言协同工作铺平道路。

应用场景展望

Worldcoin生态中,ZKP Neural Networks的潜力尤为显著。它可以验证用户创建的唯一WorldID的有效性,无需直接访问敏感的生物识别数据,从而增强了协议的无许可性质。此外,这还有助于Worldcoin的Orb硬件信任最小化,确保欺诈防护机制的正确执行,并为IrisCode等模型提供平滑的升级路径,展示了一个全新的隐私保护应用图景。

项目亮点

  1. 隐私保障: 通过零知识证明,保证了个人数据的安全,即使在验证过程中也不会泄露任何具体信息。
  2. 技术革新: 首次将深度学习与ZKP深度融合,探索了在去中心化应用中的隐私保护新途径。
  3. 灵活性与兼容性: Python与Rust的结合,以及对Serde的使用,展示了强大而灵活的跨语言模型交互能力。
  4. 高性能验证: Rust实现显著提升了模型验证的速度,对比传统方法展现出5.5倍的加速效果。
  5. 标准化模型交换: 创新的JSON中间表示,促进了模型数据的一致性和通用性,简化了不同环境下的移植与验证流程。

结语

ZKP Neural Networks项目站在了隐私计算的前沿,不仅为世界带来了更加可靠和隐私友好的身份验证方案,还打开了通向更广泛ZKML应用的大门。对于寻求在保护用户隐私前提下实施复杂验证机制的开发者来说,这是一个不容错过的宝藏工具。让我们一同探索这个开源项目,共同推动未来隐私计算技术的进步。

proto-neural-zkpArtificial intelligence and zero knowledge.项目地址:https://gitcode.com/gh_mirrors/pr/proto-neural-zkp

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真对比实验,对比了低阶ADRC传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真实验验证,评估不同控制方法的性能;⑤掌握参数调整稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
内容概要:本文介绍了SymPy,一个用于符号数学的Python库。SymPy起源于2007年,由Ondřej Čertík和Aaron Meurer发起,现已发展成一个活跃的开源社区项目。SymPy的核心功能包括符号计算、数学表达式的解析简化、微积分、线性代数、物理学和工程学应用、可视化、代码生成等。它支持符号变量的创建和基本代数运算,能求解方程、执行符号积分微分、计算极限级数、进行矩阵操作等。此外,SymPy在物理问题(如量子力学中的谐振子问题和经典力学中的运动方程)和数学问题(如函数图形和矩阵变换的可视化)的实际应用中表现出色。安装SymPy可通过pip完成,安装后可通过导入库来验证安装是否成功。SymPyNumPy的区别在于前者专注于符号数学,后者侧重于数值计算。调试SymPy代码时,可以使用print语句、pprint函数、simplify函数以及断点和调试器等工具。 适合人群:对符号数学感兴趣的程序员、研究人员、教师和学生,尤其是那些希望在Python环境中进行数学研究和教育的人群。 使用场景及目标:①用于符号数学计算,如代数运算、微积分、解方程等;②在物理学和工程学中解析和求解微分方程;③结合Matplotlib等库进行数学表达式的可视化;④将符号表达式转换为其他编程语言的代码,适用于高性能计算和嵌入式系统。 阅读建议:由于SymPy涵盖了广泛的数学功能,建议读者从基础功能入手,逐步深入到高级应用。同时,结合实际案例和可视化工具,以更好地理解和掌握SymPy的强大功能。在学习过程中,可以利用提供的调试工具确保代码的正确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍盛普Silas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值