Haikunatorpy 使用指南

Haikunatorpy 使用指南

haikunatorpyGenerate Heroku-like random names to use in your python applications项目地址:https://gitcode.com/gh_mirrors/ha/haikunatorpy

项目概述

Haikunatorpy 是一个简洁的 Python 工具库,用于生成类似于俳句的随机字符串,灵感来源于自然界的元素。它特别适合于在需要独特标识符或创造性的字符串时使用,比如在应用程序中生成友好的令牌或ID。

项目目录结构及介绍

Haikunatorpy 的项目结构清晰明了,主要组件集中在根目录下,以下是对关键部分的说明:

├── haikunator.py           # 主要逻辑实现文件
├── LICENSE                 # 许可证文件
├── README.md               # 项目说明文件,包含基本使用方法
├── requirements.txt        # 项目依赖列表
└── tests                   # 测试目录,包含所有单元测试文件
    └── test_haikunator.py  # 测试用例
  • haikunator.py:核心代码所在,实现了生成俳句样字符串的功能。
  • LICENSE:记录了该项目使用的开源许可协议。
  • README.md:快速入门指导和项目简介,对于新用户非常有用。
  • requirements.txt:列出运行此项目所需的所有第三方库版本。
  • tests 目录:包含了用于确保代码质量的单元测试。

项目的启动文件介绍

本项目并不直接需要一个传统意义上的“启动文件”,因为它的设计是为了被导入到其他Python项目中使用。但是,开发或测试本项目时,通常从 haikunator.py 开始调用函数,或者通过运行测试脚本来验证功能正确性。

示例使用

在你的Python环境中直接导入并使用Haikunator类即可:

from haikunatorpy import Haikunator

haikunator = Haikunator()
print(haikunator.haikunate())

项目的配置文件介绍

Haikunatorpy 简洁至极,未直接提供一个独立的配置文件。其定制化主要依靠调用时传入的参数来实现,比如可以调整是否使用数字或符号等。因此,配置是动态进行的,而非预先在文件中设定。

如果你希望在应用中对Haikunator的行为进行定制,推荐的方式是在你的应用配置中定义相关参数,然后在初始化Haikunator实例时传递这些参数。例如,若需自定义一些词汇集合,这将通过代码逻辑来控制,而不是通过外部配置文件。

总结,Haikunatorpy的设计哲学是轻量级和即插即用,使得集成到任何Python项目中都非常简便,无需复杂的配置步骤。

haikunatorpyGenerate Heroku-like random names to use in your python applications项目地址:https://gitcode.com/gh_mirrors/ha/haikunatorpy

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梅品万Rebecca

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值