FaceNet PyTorch 项目使用教程

FaceNet PyTorch 项目使用教程

facenet_pytorchPyTorch implementation of the paper "FaceNet: A Unified Embedding for Face Recognition and Clustering"项目地址:https://gitcode.com/gh_mirrors/fa/facenet_pytorch

1. 项目的目录结构及介绍

facenet_pytorch/
├── data/
│   ├── processed/
│   └── raw/
├── models/
│   ├── __init__.py
│   ├── mtcnn.py
│   └── inception_resnet_v1.py
├── scripts/
│   ├── preprocess.py
│   ├── embed.py
│   └── run.py
├── config/
│   └── config.yaml
├── README.md
├── requirements.txt
└── setup.py
  • data/: 存放数据集的目录,包括处理前(raw)和处理后(processed)的数据。
  • models/: 包含项目的模型文件,如 MTCNN 和 InceptionResnetV1。
  • scripts/: 包含预处理、嵌入和运行项目的脚本。
  • config/: 存放项目的配置文件。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖文件。
  • setup.py: 项目安装脚本。

2. 项目的启动文件介绍

项目的启动文件是 scripts/run.py。该文件负责加载配置、初始化模型、处理图像并进行人脸识别。

# scripts/run.py

import os
import sys
from config.config import load_config
from models.mtcnn import MTCNN
from models.inception_resnet_v1 import InceptionResnetV1
from PIL import Image

def main():
    config = load_config()
    mtcnn = MTCNN(image_size=config['image_size'], margin=config['margin'])
    resnet = InceptionResnetV1(pretrained=config['pretrained']).eval()

    img_path = config['image_path']
    img = Image.open(img_path)
    img_cropped = mtcnn(img, save_path=config['save_path'])
    img_embedding = resnet(img_cropped.unsqueeze(0))

    print(f"Image embedding: {img_embedding}")

if __name__ == "__main__":
    main()

3. 项目的配置文件介绍

项目的配置文件位于 config/config.yaml。该文件包含了项目运行所需的各种参数,如图像大小、边距、预训练模型等。

# config/config.yaml

image_size: 160
margin: 0
pretrained: 'vggface2'
image_path: 'path/to/your/image.jpg'
save_path: 'path/to/save/cropped/image.jpg'
  • image_size: 图像大小。
  • margin: 图像边距。
  • pretrained: 预训练模型。
  • image_path: 输入图像路径。
  • save_path: 裁剪后图像保存路径。

facenet_pytorchPyTorch implementation of the paper "FaceNet: A Unified Embedding for Face Recognition and Clustering"项目地址:https://gitcode.com/gh_mirrors/fa/facenet_pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苗眉妲Nora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值