FaceNet PyTorch 项目使用教程
1. 项目的目录结构及介绍
facenet_pytorch/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ ├── mtcnn.py
│ └── inception_resnet_v1.py
├── scripts/
│ ├── preprocess.py
│ ├── embed.py
│ └── run.py
├── config/
│ └── config.yaml
├── README.md
├── requirements.txt
└── setup.py
- data/: 存放数据集的目录,包括处理前(raw)和处理后(processed)的数据。
- models/: 包含项目的模型文件,如 MTCNN 和 InceptionResnetV1。
- scripts/: 包含预处理、嵌入和运行项目的脚本。
- config/: 存放项目的配置文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖文件。
- setup.py: 项目安装脚本。
2. 项目的启动文件介绍
项目的启动文件是 scripts/run.py
。该文件负责加载配置、初始化模型、处理图像并进行人脸识别。
# scripts/run.py
import os
import sys
from config.config import load_config
from models.mtcnn import MTCNN
from models.inception_resnet_v1 import InceptionResnetV1
from PIL import Image
def main():
config = load_config()
mtcnn = MTCNN(image_size=config['image_size'], margin=config['margin'])
resnet = InceptionResnetV1(pretrained=config['pretrained']).eval()
img_path = config['image_path']
img = Image.open(img_path)
img_cropped = mtcnn(img, save_path=config['save_path'])
img_embedding = resnet(img_cropped.unsqueeze(0))
print(f"Image embedding: {img_embedding}")
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件位于 config/config.yaml
。该文件包含了项目运行所需的各种参数,如图像大小、边距、预训练模型等。
# config/config.yaml
image_size: 160
margin: 0
pretrained: 'vggface2'
image_path: 'path/to/your/image.jpg'
save_path: 'path/to/save/cropped/image.jpg'
- image_size: 图像大小。
- margin: 图像边距。
- pretrained: 预训练模型。
- image_path: 输入图像路径。
- save_path: 裁剪后图像保存路径。