ElasticCTR 项目使用教程
1. 项目目录结构及介绍
ElasticCTR 项目的目录结构如下:
ElasticCTR/
├── README.md
├── requirements.txt
├── setup.py
├── elasticctr/
│ ├── __init__.py
│ ├── config/
│ │ ├── __init__.py
│ │ ├── config.yaml
│ ├── data/
│ │ ├── __init__.py
│ │ ├── preprocess.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── base_model.py
│ │ ├── deepfm.py
│ ├── utils/
│ │ ├── __init__.py
│ │ ├── metrics.py
│ ├── main.py
├── tests/
│ ├── __init__.py
│ ├── test_data.py
│ ├── test_models.py
目录结构介绍
- README.md: 项目介绍文件,包含项目的基本信息、安装步骤和使用说明。
- requirements.txt: 项目依赖文件,列出了项目运行所需的 Python 包。
- setup.py: 项目的安装脚本,用于安装项目及其依赖。
- elasticctr/: 项目的主要代码目录。
- init.py: 使
elasticctr
成为一个 Python 包。 - config/: 配置文件目录。
- config.yaml: 项目的配置文件,包含模型训练和数据处理的参数。
- data/: 数据处理相关代码。
- preprocess.py: 数据预处理脚本。
- models/: 模型定义相关代码。
- base_model.py: 基础模型类。
- deepfm.py: DeepFM 模型实现。
- utils/: 工具函数和辅助代码。
- metrics.py: 模型评估指标计算函数。
- main.py: 项目的主启动文件。
- init.py: 使
- tests/: 测试代码目录。
- test_data.py: 数据处理测试脚本。
- test_models.py: 模型测试脚本。
2. 项目启动文件介绍
项目的启动文件是 elasticctr/main.py
。该文件包含了项目的入口函数,用于启动模型训练、评估和预测等任务。
主要功能
- 模型训练: 加载配置文件,初始化模型,读取数据并进行训练。
- 模型评估: 加载训练好的模型,对测试数据进行评估,输出评估指标。
- 模型预测: 加载训练好的模型,对新数据进行预测。
使用示例
python elasticctr/main.py --config elasticctr/config/config.yaml --mode train
--config
: 指定配置文件路径。--mode
: 指定运行模式,可选值为train
,eval
,predict
。
3. 项目的配置文件介绍
项目的配置文件位于 elasticctr/config/config.yaml
。该文件采用 YAML 格式,包含了模型训练和数据处理的各种参数。
配置文件结构
data:
train_path: "path/to/train/data"
test_path: "path/to/test/data"
batch_size: 64
model:
type: "deepfm"
embedding_dim: 16
hidden_units: [128, 64, 32]
train:
epochs: 10
learning_rate: 0.001
eval:
metrics: ["auc", "accuracy"]
配置项说明
- data: 数据相关配置。
train_path
: 训练数据路径。test_path
: 测试数据路径。batch_size
: 批处理大小。
- model: 模型相关配置。
type
: 模型类型,如deepfm
。embedding_dim
: 嵌入维度。hidden_units
: 隐藏层单元数。
- train: 训练相关配置。
epochs
: 训练轮数。learning_rate
: 学习率。
- eval: 评估相关配置。
metrics
: 评估指标,如auc
,accuracy
。
通过修改配置文件中的参数,可以灵活调整模型的训练和评估过程。