ElasticCTR 项目使用教程

ElasticCTR 项目使用教程

ElasticCTR ElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且作为开源套件,满足二次深度开发的需求。 ElasticCTR 项目地址: https://gitcode.com/gh_mirrors/el/ElasticCTR

1. 项目目录结构及介绍

ElasticCTR 项目的目录结构如下:

ElasticCTR/
├── README.md
├── requirements.txt
├── setup.py
├── elasticctr/
│   ├── __init__.py
│   ├── config/
│   │   ├── __init__.py
│   │   ├── config.yaml
│   ├── data/
│   │   ├── __init__.py
│   │   ├── preprocess.py
│   ├── models/
│   │   ├── __init__.py
│   │   ├── base_model.py
│   │   ├── deepfm.py
│   ├── utils/
│   │   ├── __init__.py
│   │   ├── metrics.py
│   ├── main.py
├── tests/
│   ├── __init__.py
│   ├── test_data.py
│   ├── test_models.py

目录结构介绍

  • README.md: 项目介绍文件,包含项目的基本信息、安装步骤和使用说明。
  • requirements.txt: 项目依赖文件,列出了项目运行所需的 Python 包。
  • setup.py: 项目的安装脚本,用于安装项目及其依赖。
  • elasticctr/: 项目的主要代码目录。
    • init.py: 使 elasticctr 成为一个 Python 包。
    • config/: 配置文件目录。
      • config.yaml: 项目的配置文件,包含模型训练和数据处理的参数。
    • data/: 数据处理相关代码。
      • preprocess.py: 数据预处理脚本。
    • models/: 模型定义相关代码。
      • base_model.py: 基础模型类。
      • deepfm.py: DeepFM 模型实现。
    • utils/: 工具函数和辅助代码。
      • metrics.py: 模型评估指标计算函数。
    • main.py: 项目的主启动文件。
  • tests/: 测试代码目录。
    • test_data.py: 数据处理测试脚本。
    • test_models.py: 模型测试脚本。

2. 项目启动文件介绍

项目的启动文件是 elasticctr/main.py。该文件包含了项目的入口函数,用于启动模型训练、评估和预测等任务。

主要功能

  • 模型训练: 加载配置文件,初始化模型,读取数据并进行训练。
  • 模型评估: 加载训练好的模型,对测试数据进行评估,输出评估指标。
  • 模型预测: 加载训练好的模型,对新数据进行预测。

使用示例

python elasticctr/main.py --config elasticctr/config/config.yaml --mode train
  • --config: 指定配置文件路径。
  • --mode: 指定运行模式,可选值为 train, eval, predict

3. 项目的配置文件介绍

项目的配置文件位于 elasticctr/config/config.yaml。该文件采用 YAML 格式,包含了模型训练和数据处理的各种参数。

配置文件结构

data:
  train_path: "path/to/train/data"
  test_path: "path/to/test/data"
  batch_size: 64

model:
  type: "deepfm"
  embedding_dim: 16
  hidden_units: [128, 64, 32]

train:
  epochs: 10
  learning_rate: 0.001

eval:
  metrics: ["auc", "accuracy"]

配置项说明

  • data: 数据相关配置。
    • train_path: 训练数据路径。
    • test_path: 测试数据路径。
    • batch_size: 批处理大小。
  • model: 模型相关配置。
    • type: 模型类型,如 deepfm
    • embedding_dim: 嵌入维度。
    • hidden_units: 隐藏层单元数。
  • train: 训练相关配置。
    • epochs: 训练轮数。
    • learning_rate: 学习率。
  • eval: 评估相关配置。
    • metrics: 评估指标,如 auc, accuracy

通过修改配置文件中的参数,可以灵活调整模型的训练和评估过程。

ElasticCTR ElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且作为开源套件,满足二次深度开发的需求。 ElasticCTR 项目地址: https://gitcode.com/gh_mirrors/el/ElasticCTR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宁彦腾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值