KVision 项目教程

KVision 项目教程

kvisionObject oriented web framework for Kotlin/JS项目地址:https://gitcode.com/gh_mirrors/kv/kvision

1. 项目的目录结构及介绍

KVision 项目的目录结构如下:

kvision/
├── build.gradle.kts
├── settings.gradle.kts
├── gradle/
├── gradlew
├── gradlew.bat
├── src/
│   ├── main/
│   │   ├── kotlin/
│   │   │   └── com/
│   │   │       └── example/
│   │   │           └── kvision/
│   │   │               ├── App.kt
│   │   │               └── Main.kt
│   │   └── resources/
│   └── test/
│       └── kotlin/
│           └── com/
│               └── example/
│                   └── kvision/
│                       └── AppTest.kt
└── README.md

目录结构介绍

  • build.gradle.ktssettings.gradle.kts: Gradle 构建脚本。
  • gradle/: Gradle 包装器和相关文件。
  • gradlewgradlew.bat: Gradle 包装器脚本。
  • src/: 源代码目录。
    • main/: 主代码目录。
      • kotlin/: Kotlin 源代码目录。
        • com/example/kvision/: 项目主要代码目录。
          • App.kt: 应用程序主类。
          • Main.kt: 主入口文件。
      • resources/: 资源文件目录。
    • test/: 测试代码目录。
      • kotlin/: Kotlin 测试代码目录。
        • com/example/kvision/: 测试代码目录。
          • AppTest.kt: 应用程序测试类。
  • README.md: 项目说明文档。

2. 项目的启动文件介绍

主入口文件

Main.kt 是 KVision 项目的主入口文件,其内容如下:

package com.example.kvision

import io.kvision.Application
import io.kvision.startApplication

fun main() {
    startApplication(::App, module.hot)
}

应用程序主类

App.kt 是 KVision 项目的应用程序主类,其内容如下:

package com.example.kvision

import io.kvision.Application
import io.kvision.core.Container
import io.kvision.html.h1
import io.kvision.panel.vPanel
import io.kvision.state.ObservableValue
import io.kvision.utils.onClick

class App : Application() {
    val state = ObservableValue("Hello world")

    override fun start() {
        root("root") {
            vPanel {
                h1(state) {
                    +it
                }
                button("Add an exclamation mark") {
                    onClick {
                        state.value += "!"
                    }
                }
            }
        }
    }
}

3. 项目的配置文件介绍

Gradle 构建脚本

build.gradle.kts 是 KVision 项目的 Gradle 构建脚本,其内容如下:

import org.jetbrains.kotlin.gradle.targets.js.webpack.KotlinWebpackConfig

plugins {
    kotlin("multiplatform") version "1.5.31"
    id("io.kvision") version "4.2.1"
}

repositories {
    mavenCentral()
    mavenLocal()
}

kotlin {
    jvm()
    js {
        browser {
            commonWebpackConfig {
                cssSupport.enabled = true
            }
        }
        binaries.executable()
    }
    sourceSets {
        val commonMain by getting {
            dependencies {
                implementation("io.kvision:kvision:4.2.1")
            }
        }
        val jvmMain by getting {
            dependencies {
                implementation("io.kvision:kvision-server-ktor:4.2.1")
            }
        }
        val jsMain by getting {
            dependencies {
                implementation("io.kvision:kvision-bootstrap:4.2.1")
            }
        }

kvisionObject oriented web framework for Kotlin/JS项目地址:https://gitcode.com/gh_mirrors/kv/kvision

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤尚柏Louis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值