深入解析hadyang/interview项目中的排序算法
interview 项目地址: https://gitcode.com/gh_mirrors/intervi/interview
排序算法是计算机科学中最基础也是最重要的算法之一。本文将全面解析hadyang/interview项目中涉及的各类排序算法,从基础概念到具体实现,帮助读者深入理解排序算法的核心思想与应用场景。
排序算法概述
排序算法可以分为两大类:稳定排序和不稳定排序。稳定排序指的是在排序过程中,相等元素的相对位置不会改变;而不稳定排序则不能保证这一点。
稳定排序算法
- 冒泡排序:时间复杂度O(n²)
- 插入排序:时间复杂度O(n²)
- 归并排序:时间复杂度O(nlogn),需要额外空间
- 桶排序:时间复杂度O(n),需要额外空间
- 基数排序:时间复杂度O(n·k),需要额外空间
不稳定排序算法
- 选择排序:时间复杂度O(n²)
- 希尔排序:时间复杂度O(nlogn)
- 堆排序:时间复杂度O(nlogn)
- 快速排序:平均时间复杂度O(nlogn),最坏O(n²)
交换排序详解
冒泡排序
冒泡排序是最简单的排序算法之一,其核心思想是通过相邻元素的比较和交换,将较大的元素逐步"冒泡"到数组的末端。
算法特点:
- 稳定排序
- 时间复杂度始终为O(n²)
- 空间复杂度O(1)
优化思路:
- 设置标志位,当某一轮没有发生交换时提前结束排序
- 记录最后交换位置,减少下一轮的比较次数
void bubble_sort(int a[], int n) {
for (int j = 0; j < n - 1; j++) {
bool swapped = false;
for (int i = 0; i < n - 1 - j; i++) {
if(a[i] > a[i + 1]) {
swap(a[i], a[i+1]);
swapped = true;
}
}
if(!swapped) break; // 提前终止
}
}
快速排序
快速排序采用分治策略,是目前实践中最高效的排序算法之一。
算法步骤:
- 选取基准值(pivot)
- 分区操作:将小于基准的元素放在左边,大于基准的放在右边
- 递归地对左右子序列进行快速排序
性能分析:
- 平均时间复杂度:O(nlogn)
- 最坏时间复杂度:O(n²)(当数组已排序或逆序时)
- 不稳定排序
public void quickSort(int[] arr, int low, int high) {
if (low < high) {
int pivot = partition(arr, low, high);
quickSort(arr, low, pivot - 1);
quickSort(arr, pivot + 1, high);
}
}
private int partition(int[] arr, int low, int high) {
int pivot = arr[high];
int i = low - 1;
for (int j = low; j < high; j++) {
if (arr[j] < pivot) {
i++;
swap(arr, i, j);
}
}
swap(arr, i + 1, high);
return i + 1;
}
优化策略:
- 三数取中法选择基准值
- 小数组时切换为插入排序
- 尾递归优化
- 三向切分处理大量重复元素
插入排序家族
直接插入排序
插入排序的工作原理类似于整理扑克牌,将每个元素插入到已排序序列的适当位置。
算法特点:
- 稳定排序
- 时间复杂度O(n²)
- 对小规模数据或基本有序数据效率很高
void insert_sort(int* a, int len) {
for (int i = 1; i < len; ++i) {
int key = a[i];
int j = i - 1;
while (j >= 0 && a[j] > key) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = key;
}
}
希尔排序
希尔排序是插入排序的改进版,通过分组插入排序来提升性能。
算法特点:
- 不稳定排序
- 时间复杂度取决于增量序列,最好可达O(nlog²n)
- 空间复杂度O(1)
void shell_sort(int* a, int len) {
for (int gap = len/2; gap > 0; gap /= 2) {
for (int i = gap; i < len; ++i) {
int temp = a[i];
int j;
for (j = i; j >= gap && a[j-gap] > temp; j -= gap) {
a[j] = a[j-gap];
}
a[j] = temp;
}
}
}
选择排序及其变种
直接选择排序
每次从未排序部分选择最小(大)元素放到已排序部分的末尾。
算法特点:
- 不稳定排序
- 时间复杂度始终为O(n²)
- 交换次数最少为O(n)
void selection_sort(int arr[], int len) {
for (int i = 0; i < len-1; i++) {
int min_idx = i;
for (int j = i+1; j < len; j++) {
if (arr[j] < arr[min_idx]) {
min_idx = j;
}
}
swap(arr[i], arr[min_idx]);
}
}
堆排序
利用堆数据结构设计的排序算法,是一种改进的选择排序。
算法步骤:
- 构建最大堆
- 将堆顶元素与末尾元素交换
- 调整剩余元素为最大堆
- 重复步骤2-3直到排序完成
算法特点:
- 不稳定排序
- 时间复杂度O(nlogn)
- 空间复杂度O(1)
public void heapSort(int[] nums) {
// 构建最大堆
for (int i = nums.length/2-1; i >= 0; i--) {
heapify(nums, nums.length, i);
}
// 逐个提取元素
for (int i = nums.length-1; i > 0; i--) {
swap(nums, 0, i);
heapify(nums, i, 0);
}
}
private void heapify(int[] arr, int n, int i) {
int largest = i;
int left = 2*i + 1;
int right = 2*i + 2;
if (left < n && arr[left] > arr[largest]) {
largest = left;
}
if (right < n && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, n, largest);
}
}
分治策略排序算法
归并排序
典型的分治算法,将数组分成两半分别排序,然后合并结果。
算法特点:
- 稳定排序
- 时间复杂度O(nlogn)
- 空间复杂度O(n)
public void mergeSort(int[] arr, int l, int r, int[] temp) {
if (l < r) {
int mid = (l + r) / 2;
mergeSort(arr, l, mid, temp);
mergeSort(arr, mid+1, r, temp);
merge(arr, l, mid, r, temp);
}
}
private void merge(int[] arr, int l, int mid, int r, int[] temp) {
int i = l, j = mid+1, k = 0;
while (i <= mid && j <= r) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
} else {
temp[k++] = arr[j++];
}
}
while (i <= mid) temp[k++] = arr[i++];
while (j <= r) temp[k++] = arr[j++];
System.arraycopy(temp, 0, arr, l, k);
}
非比较排序算法
桶排序
将元素分配到有限数量的桶中,每个桶再单独排序。
适用场景:
- 数据均匀分布
- 知道数据范围
- 需要稳定排序
算法特点:
- 时间复杂度O(n+k),k为桶的数量
- 空间复杂度O(n+k)
基数排序
按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。
算法特点:
- 稳定排序
- 时间复杂度O(nk),k为数字位数
- 空间复杂度O(n+k)
void radixSort(int[] arr) {
int max = Arrays.stream(arr).max().getAsInt();
for (int exp = 1; max/exp > 0; exp *= 10) {
countSort(arr, exp);
}
}
void countSort(int[] arr, int exp) {
int[] output = new int[arr.length];
int[] count = new int[10];
for (int num : arr) {
count[(num/exp)%10]++;
}
for (int i = 1; i < 10; i++) {
count[i] += count[i-1];
}
for (int i = arr.length-1; i >= 0; i--) {
output[count[(arr[i]/exp)%10]-1] = arr[i];
count[(arr[i]/exp)%10]--;
}
System.arraycopy(output, 0, arr, 0, arr.length);
}
拓扑排序
对有向无环图(DAG)进行排序,使得对于图中的每一条有向边(u,v),u在排序中总是位于v的前面。
应用场景:
- 任务调度
- 课程安排
- 依赖解析
算法实现(Kahn算法):
- 计算所有节点的入度
- 将入度为0的节点加入队列
- 取出队列中的节点并输出,将其邻接节点的入度减1
- 如果邻接节点入度变为0,加入队列
- 重复步骤3-4直到队列为空
排序算法选择指南
- 小规模数据:插入排序(稳定,实现简单)
- 基本有序数据:插入排序或冒泡排序
- 大规模随机数据:快速排序(平均性能最好)
- 需要稳定排序:归并排序
- 数据范围已知且均匀分布:桶排序或计数排序
- 链表结构:归并排序(适合链表排序)
- 外部排序:多路归并排序
总结
hadyang/interview项目中涵盖了从基础到高级的各种排序算法实现。理解这些算法的核心思想、时间空间复杂度以及适用场景,对于计算机科学学习和技术面试都至关重要。实际应用中,我们需要根据数据特征和性能要求选择合适的排序算法,有时还需要结合多种算法的优势进行优化。
interview 项目地址: https://gitcode.com/gh_mirrors/intervi/interview
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考