深入解析hadyang/interview项目中的排序算法

深入解析hadyang/interview项目中的排序算法

interview interview 项目地址: https://gitcode.com/gh_mirrors/intervi/interview

排序算法是计算机科学中最基础也是最重要的算法之一。本文将全面解析hadyang/interview项目中涉及的各类排序算法,从基础概念到具体实现,帮助读者深入理解排序算法的核心思想与应用场景。

排序算法概述

排序算法可以分为两大类:稳定排序不稳定排序。稳定排序指的是在排序过程中,相等元素的相对位置不会改变;而不稳定排序则不能保证这一点。

稳定排序算法

  • 冒泡排序:时间复杂度O(n²)
  • 插入排序:时间复杂度O(n²)
  • 归并排序:时间复杂度O(nlogn),需要额外空间
  • 桶排序:时间复杂度O(n),需要额外空间
  • 基数排序:时间复杂度O(n·k),需要额外空间

不稳定排序算法

  • 选择排序:时间复杂度O(n²)
  • 希尔排序:时间复杂度O(nlogn)
  • 堆排序:时间复杂度O(nlogn)
  • 快速排序:平均时间复杂度O(nlogn),最坏O(n²)

交换排序详解

冒泡排序

冒泡排序是最简单的排序算法之一,其核心思想是通过相邻元素的比较和交换,将较大的元素逐步"冒泡"到数组的末端。

算法特点

  • 稳定排序
  • 时间复杂度始终为O(n²)
  • 空间复杂度O(1)

优化思路

  1. 设置标志位,当某一轮没有发生交换时提前结束排序
  2. 记录最后交换位置,减少下一轮的比较次数
void bubble_sort(int a[], int n) {
    for (int j = 0; j < n - 1; j++) {
        bool swapped = false;
        for (int i = 0; i < n - 1 - j; i++) {
            if(a[i] > a[i + 1]) {
                swap(a[i], a[i+1]);
                swapped = true;
            }
        }
        if(!swapped) break; // 提前终止
    }
}

快速排序

快速排序采用分治策略,是目前实践中最高效的排序算法之一。

算法步骤

  1. 选取基准值(pivot)
  2. 分区操作:将小于基准的元素放在左边,大于基准的放在右边
  3. 递归地对左右子序列进行快速排序

性能分析

  • 平均时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n²)(当数组已排序或逆序时)
  • 不稳定排序
public void quickSort(int[] arr, int low, int high) {
    if (low < high) {
        int pivot = partition(arr, low, high);
        quickSort(arr, low, pivot - 1);
        quickSort(arr, pivot + 1, high);
    }
}

private int partition(int[] arr, int low, int high) {
    int pivot = arr[high];
    int i = low - 1;
    
    for (int j = low; j < high; j++) {
        if (arr[j] < pivot) {
            i++;
            swap(arr, i, j);
        }
    }
    swap(arr, i + 1, high);
    return i + 1;
}

优化策略

  1. 三数取中法选择基准值
  2. 小数组时切换为插入排序
  3. 尾递归优化
  4. 三向切分处理大量重复元素

插入排序家族

直接插入排序

插入排序的工作原理类似于整理扑克牌,将每个元素插入到已排序序列的适当位置。

算法特点

  • 稳定排序
  • 时间复杂度O(n²)
  • 对小规模数据或基本有序数据效率很高
void insert_sort(int* a, int len) {
    for (int i = 1; i < len; ++i) {
        int key = a[i];
        int j = i - 1;
        while (j >= 0 && a[j] > key) {
            a[j + 1] = a[j];
            j--;
        }
        a[j + 1] = key;
    }
}

希尔排序

希尔排序是插入排序的改进版,通过分组插入排序来提升性能。

算法特点

  • 不稳定排序
  • 时间复杂度取决于增量序列,最好可达O(nlog²n)
  • 空间复杂度O(1)
void shell_sort(int* a, int len) {
    for (int gap = len/2; gap > 0; gap /= 2) {
        for (int i = gap; i < len; ++i) {
            int temp = a[i];
            int j;
            for (j = i; j >= gap && a[j-gap] > temp; j -= gap) {
                a[j] = a[j-gap];
            }
            a[j] = temp;
        }
    }
}

选择排序及其变种

直接选择排序

每次从未排序部分选择最小(大)元素放到已排序部分的末尾。

算法特点

  • 不稳定排序
  • 时间复杂度始终为O(n²)
  • 交换次数最少为O(n)
void selection_sort(int arr[], int len) {
    for (int i = 0; i < len-1; i++) {
        int min_idx = i;
        for (int j = i+1; j < len; j++) {
            if (arr[j] < arr[min_idx]) {
                min_idx = j;
            }
        }
        swap(arr[i], arr[min_idx]);
    }
}

堆排序

利用堆数据结构设计的排序算法,是一种改进的选择排序。

算法步骤

  1. 构建最大堆
  2. 将堆顶元素与末尾元素交换
  3. 调整剩余元素为最大堆
  4. 重复步骤2-3直到排序完成

算法特点

  • 不稳定排序
  • 时间复杂度O(nlogn)
  • 空间复杂度O(1)
public void heapSort(int[] nums) {
    // 构建最大堆
    for (int i = nums.length/2-1; i >= 0; i--) {
        heapify(nums, nums.length, i);
    }
    
    // 逐个提取元素
    for (int i = nums.length-1; i > 0; i--) {
        swap(nums, 0, i);
        heapify(nums, i, 0);
    }
}

private void heapify(int[] arr, int n, int i) {
    int largest = i;
    int left = 2*i + 1;
    int right = 2*i + 2;
    
    if (left < n && arr[left] > arr[largest]) {
        largest = left;
    }
    
    if (right < n && arr[right] > arr[largest]) {
        largest = right;
    }
    
    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, n, largest);
    }
}

分治策略排序算法

归并排序

典型的分治算法,将数组分成两半分别排序,然后合并结果。

算法特点

  • 稳定排序
  • 时间复杂度O(nlogn)
  • 空间复杂度O(n)
public void mergeSort(int[] arr, int l, int r, int[] temp) {
    if (l < r) {
        int mid = (l + r) / 2;
        mergeSort(arr, l, mid, temp);
        mergeSort(arr, mid+1, r, temp);
        merge(arr, l, mid, r, temp);
    }
}

private void merge(int[] arr, int l, int mid, int r, int[] temp) {
    int i = l, j = mid+1, k = 0;
    
    while (i <= mid && j <= r) {
        if (arr[i] <= arr[j]) {
            temp[k++] = arr[i++];
        } else {
            temp[k++] = arr[j++];
        }
    }
    
    while (i <= mid) temp[k++] = arr[i++];
    while (j <= r) temp[k++] = arr[j++];
    
    System.arraycopy(temp, 0, arr, l, k);
}

非比较排序算法

桶排序

将元素分配到有限数量的桶中,每个桶再单独排序。

适用场景

  • 数据均匀分布
  • 知道数据范围
  • 需要稳定排序

算法特点

  • 时间复杂度O(n+k),k为桶的数量
  • 空间复杂度O(n+k)

基数排序

按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。

算法特点

  • 稳定排序
  • 时间复杂度O(nk),k为数字位数
  • 空间复杂度O(n+k)
void radixSort(int[] arr) {
    int max = Arrays.stream(arr).max().getAsInt();
    
    for (int exp = 1; max/exp > 0; exp *= 10) {
        countSort(arr, exp);
    }
}

void countSort(int[] arr, int exp) {
    int[] output = new int[arr.length];
    int[] count = new int[10];
    
    for (int num : arr) {
        count[(num/exp)%10]++;
    }
    
    for (int i = 1; i < 10; i++) {
        count[i] += count[i-1];
    }
    
    for (int i = arr.length-1; i >= 0; i--) {
        output[count[(arr[i]/exp)%10]-1] = arr[i];
        count[(arr[i]/exp)%10]--;
    }
    
    System.arraycopy(output, 0, arr, 0, arr.length);
}

拓扑排序

对有向无环图(DAG)进行排序,使得对于图中的每一条有向边(u,v),u在排序中总是位于v的前面。

应用场景

  • 任务调度
  • 课程安排
  • 依赖解析

算法实现(Kahn算法):

  1. 计算所有节点的入度
  2. 将入度为0的节点加入队列
  3. 取出队列中的节点并输出,将其邻接节点的入度减1
  4. 如果邻接节点入度变为0,加入队列
  5. 重复步骤3-4直到队列为空

排序算法选择指南

  1. 小规模数据:插入排序(稳定,实现简单)
  2. 基本有序数据:插入排序或冒泡排序
  3. 大规模随机数据:快速排序(平均性能最好)
  4. 需要稳定排序:归并排序
  5. 数据范围已知且均匀分布:桶排序或计数排序
  6. 链表结构:归并排序(适合链表排序)
  7. 外部排序:多路归并排序

总结

hadyang/interview项目中涵盖了从基础到高级的各种排序算法实现。理解这些算法的核心思想、时间空间复杂度以及适用场景,对于计算机科学学习和技术面试都至关重要。实际应用中,我们需要根据数据特征和性能要求选择合适的排序算法,有时还需要结合多种算法的优势进行优化。

interview interview 项目地址: https://gitcode.com/gh_mirrors/intervi/interview

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤尚柏Louis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值